The non-invasive estimation of blood oxygen saturation (SpO2) by pulse oximetry is of vital importance clinically, from the detection of sleep apnea to the recent ambulatory monitoring of hypoxemia in the delayed post-infective phase of COVID-19. In this proof of concept study, we set out to establish the feasibility of SpO2 measurement from the ear canal as a convenient site for long term monitoring, and perform a comprehensive comparison with the right index finger—the conventional clinical measurement site. During resting blood oxygen saturation estimation, we found a root mean square difference of 1.47% between the two measurement sites, with a mean difference of 0.23% higher SpO2 in the right ear canal. Using breath holds, we observe the known phenomena of time delay between central circulation and peripheral circulation with a mean delay between the ear and finger of 12.4 s across all subjects. Furthermore, we document the lower photoplethysmogram amplitude from the ear canal and suggest ways to mitigate this issue. In conjunction with the well-known robustness to temperature induced vasoconstriction, this makes conclusive evidence for in-ear SpO2 monitoring being both convenient and superior to conventional finger measurement for continuous non-intrusive monitoring in both clinical and everyday-life settings.
An ability to extract detailed spirometry-like breathing waveforms from wearable sensors promises to greatly improve respiratory health monitoring. Photoplethysmography (PPG) has been researched in depth for estimation of respiration rate, given that it varies with respiration through overall intensity, pulse amplitude and pulse interval. We compare and contrast the extraction of these three respiratory modes from both the ear canal and finger and show a marked improvement in the respiratory power for respiration induced intensity variations and pulse amplitude variations when recording from the ear canal. We next employ a data driven multi-scale method, noise assisted multivariate empirical mode decomposition (NA-MEMD), which allows for simultaneous analysis of all three respiratory modes to extract detailed respiratory waveforms from in-ear PPG. For rigour, we considered in-ear PPG recordings from healthy subjects, both older and young, patients with chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) and healthy subjects with artificially obstructed breathing. Specific in-ear PPG waveform changes are observed for COPD, such as a decreased inspiratory duty cycle and an increased inspiratory magnitude, when compared with expiratory magnitude. These differences are used to classify COPD from healthy and IPF waveforms with a sensitivity of 87% and an overall accuracy of 92%. Our findings indicate the promise of in-ear PPG for COPD screening and unobtrusive respiratory monitoring in ambulatory scenarios and in consumer wearables.
Passive acoustic mapping (PAM) is an algorithm that reconstructs the location of acoustic sources using an array of receivers. This technique can monitor therapeutic ultrasound procedures to confirm the spatial distribution and amount of microbubble activity induced. Current PAM algorithms have an excellent lateral resolution, but have a poor axial resolution, making it difficult to distinguish acoustic sources within the ultrasound beams. With recent studies demonstrating that shortlength and low-pressure pulsesacoustic waveletshave therapeutic function, we hypothesized that the axial resolution could be improved with a quasi-pulse-echo approach and that the resolution improvement would depend on the wavelet's pulse length. This paper describes an algorithm that resolves acoustic sources axially using time of flight and laterally using delay-andsum beamforming, which we named axial temporal position passive acoustic mapping (ATP-PAM). The algorithm accommodates a rapid short pulse (RaSP) sequence that can safely deliver drugs across the blood-brain barrier. We developed our algorithm with simulations (k-wave) and in vitro experiments for 1-, 2-, and 5-cycle pulses, comparing our resolution against that of two current PAM algorithms. We then tested ATP-PAM in vivo and evaluated whether the reconstructed acoustic sources mapped to drug delivery within the brain. In simulations and in vitro, ATP-PAM had an improved resolution for all pulse lengths tested. In vivo, experiments in mice indicated that ATP-PAM could be used to target and monitor drug delivery into the brain. With acoustic wavelets and time of flight, ATP-PAM can locate acoustic sources with a vastly improved spatial resolution.
Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.