Hydride ion conduction in layered perovskites is of great interest for sustainableenergy applications. In this report we study Ba 2 ScHO 3 , a recently synthesized oxyhydride with an unusual anion ordering, using a multifaceted density functional theory approach involving both transition state calculations and molecular dynamics simulations. Beyond simply identifying the key ion migration pathways, we perform detailed analysis of transition states and identify key interactions which drive trends in ionic mobility. Our key findings are that ionic mobility is, remarkably, independent of hydride-oxide disorder, the dominant migration pathway changes under pressure, and a reduction in A-site cation size accelerates hydride diffusion. Local structural flexibility along migration pathways is understood in terms of dimensionality and ionic size, and we thus identify crystal engineering principles for rational design of ion conductors.On the basis of our new insights into these materials, we predict that Sr 2 ScHO 3 will show improved conductivity over existing analogues.
The energy landscape of the fast-ion conductor Bi 4 V 2 O 11 is studied using density functional theory. There are a large number of energy minima, dominated by low-lying thermally accessible configurations in which there are equal numbers of oxygen vacancies in each vanadium–oxygen layer, a range of vanadium coordinations and a large variation in Bi–O and V–O distances. By dividing local minima in the energy landscape into sets of configurations, we then examine diffusion in each different layer using ab initio molecular dynamics. These simulations show that the diffusion mechanism mainly takes place in the 〈110〉 directions in the vanadium layers, involving the cooperative motion of the oxide ions between the O(2) and O(3) sites in these layers, but not O(1) in the Bi–O layers, in agreement with experiment. O(1) vacancies in the Bi–O layers are readily filled by the migration of oxygens from the V–O layers. The calculated ionic conductivity is in reasonable agreement with the experiment. We compare ion conduction in δ-Bi 4 V 2 O 11 with that in δ-Bi 2 O 3 . This article is part of the Theo Murphy meeting issue ‘Understanding fast-ion conduction in solid electrolytes’.
Hydride ion conduction in layered perovskites is of great interest for sustainable-energy applications. In this report we study Ba2ScHO3, a recently synthesized oxyhydride with an unusual anion ordering, using a multifaceted density functional theory approach involving both transition state calculations and molecular dynamics simulations. Beyond simply identifying the key ion migration pathways, we perform detailed analysis of transition states and identify key interactions which drive trends in ionic mobility. Our key findings are that ionic mobility is, remarkably, independent of hydride-oxide disorder, the dominant migration pathway changes under pressure, and a reduction in A-site cation size accelerates hydride diffusion. Local structural flexibility along migration pathways is understood in terms of dimensionality and ionic size, and we thus identify crystal engineering principles for rational design of ion conductors. On the basis of our new insights into these materials, we predict that Sr2ScHO3 will show improved conductivity over existing analogues.
Hydride ion conduction in layered perovskites is of great interest for sustainable-energy applications. In this report we study Ba2ScHO3, a recently synthesized oxyhydride with an unusual anion ordering, using a multifaceted density functional theory approach involving both transition state calculations and molecular dynamics simulations. Beyond simply identifying the key ion migration pathways, we perform detailed analysis of transition states and identify key interactions which drive trends in ionic mobility. Our key findings are that ionic mobility is, remarkably, independent of hydride-oxide disorder, the dominant migration pathway changes under pressure, and a reduction in A-site cation size accelerates hydride diffusion. Local structural flexibility along migration pathways is understood in terms of dimensionality and ionic size, and we thus identify crystal engineering principles for rational design of ion conductors. On the basis of our new insights into these materials, we predict that Sr2ScHO3 will show improved conductivity over existing analogues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.