We give an account of the work of Robin Fåhraeus over the years 1917-1938, his contribution to our understanding of blood rheology, and its relevance to circulatory physiology. Fåhraeus published few original papers on this subject, yet he clearly understood the phenomena occurring in the tube flow of mammalian blood. 1) The concentration of cells in a tube less than 0.3 mm in diameter differs from that in the larger feed tube or reservoir, the Fåhraeus effect. This is due to a difference in the mean velocity of cells and plasma in the smaller vessel associated with a nonuniform distribution of the cells. 2) In tubes less than 0.3 mm in diameter, the resistance to blood flow decreases with decreasing tube diameter, the Fåhraeus-Lindqvist effect. We define and generalize the two effects and describe how red cell aggregation at low shear rates affects cell vessel concentration and resistance to flow. The fluid mechanical principles underlying blood cell lateral migration in tube flow and its application to Fåhraeus' work are discussed. Experimental data on the Fåhraeus and Fåhraeus-Lindqvist effects are given for red cells, white cells, and platelets. Finally, the extension of the classical Fåhraeus effect to microcirculatory beds, the Fåhraeus Network effect, is described. One of the explanations for the observed, very low average capillary hematocrits is that the low values are due to a combination of the repeated phase separation of red cells and plasma at capillary bifurcations (network effect) and the single-vessel Fåhraeus effect.
The behavior of particles undergoing Couette and Poiseuille flows at rates when inertial effects become significant was investigated.
The rotation of rigid particles was similar to that in the Stokes flow regime, except for a drift of cylinders to limiting rotational orbits corresponding to the maximum energy dissipation.
In Poiseuille flow, rigid particles migrated to an equilibrium radial position which depended on the density difference of two phases, the directions of sedimentation velocity and flow, and the ratio of particle to tube radius. Neutrally buoyant deformable particles always migrated to the tube axis.
In concentrated suspensions a plasmatic layer developed near the tube wall as a consequence of radial migration. The formation of this layer modified the velocity profile and caused a reduction in the apparent viscosity coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.