A diverse immune repertoire is considered a hallmark of good health, but measuring diversity requires a framework that incorporates not only sequences’ relative frequencies but also their functional similarity to each other. Using experimentally measured dissociation constants from over 1,300 antibody-antigen and T-cell receptor (TCR)-peptide pairs, we developed a framework for functional immunological diversity based on binding and applied it to nearly 400 high-throughput antibody and TCR repertoires to reveal patterns in immunological memory, infection, vaccination, and aging. We show that functional diversity adds information that is not captured by raw diversity, revealing signatures of e.g. clonal selection, and that unlike raw diversity, functional diversity is a robust measure that does not require correction for sampling error. Finally, we show that according to functional diversity, unlike raw diversity, individuals’ repertoires overlap substantially, indicating a definable ceiling for the functional diversity of human adaptive immunity. Similarity redefines diversity in complex systems.
Many readmission prediction models have marginal accuracy and are based on clinical and demographic data that exclude patient response data. The objective of this study was to evaluate the accuracy of a 30-day hospital readmission prediction model that incorporates patient response data capturing the patient experience. This was a prospective cohort study of 30-day hospital readmissions. A logistic regression model to predict readmission risk was created using patient responses obtained during interviewer-administered questionnaires as well as demographic and clinical data. Participants (N = 846) were admitted to 2 inpatient adult medicine units at Massachusetts General Hospital from 2012 to 2016. The primary outcome was the accuracy (measured by receiver operating characteristic) of a 30-day readmission risk prediction model. Secondary analyses included a readmission-focused factor analysis of individual versus collective patient experience questions. Of 1754 eligible participants, 846 (48%) were enrolled and 201 (23.8%) had a 30-day readmission. Demographic factors had an accuracy of 0.56 (confidence interval [CI], 0.50-0.62), clinical disease factors had an accuracy of 0.59 (CI, 0.54-0.65), and the patient experience factors had an accuracy of 0.60 (CI, 0.56-0.64). Taken together, their combined accuracy of receiver operating characteristic = 0.78 (CI, 0.74-0.82) was significantly more accurate than these factors were individually. The individual accuracy of patient experience, demographic, and clinical data was relatively poor and consistent with other risk prediction models. The combination of the 3 types of data significantly improved the ability to predict 30-day readmissions. This study suggests that more accurate 30-day readmission risk prediction models can be generated by including information about the patient experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.