Members of the transforming growth factor- (TGF-)superfamily signal through unique cell membrane receptor serine-threonine kinases to activate downstream targets. TRAP1 is a previously described 96-kDa cytoplasmic protein shown to bind to TGF- receptors and suggested to play a role in TGF- signaling. We now fully characterize the binding properties of TRAP1, and show that it associates strongly with inactive heteromeric TGF- and activin receptor complexes and is released upon activation of signaling. Moreover, we demonstrate that TRAP1 plays a role in the Smad-mediated signal transduction pathway, interacting with the common mediator, Smad4, in a ligand-dependent fashion. While TRAP1 has only a small stimulatory effect on TGF- signaling in functional assays, deletion constructs of TRAP1 inhibit TGF- signaling and diminish the interaction of Smad4 with Smad2. These are the first data to identify a specific molecular chaperone for Smad4, suggesting a model in which TRAP1 brings Smad4 into the vicinity of the receptor complex and facilitates its transfer to the receptor-activated Smad proteins.
Thirty nights of OOK did not alter Pdc when measured 4 hours after awakening. OOK caused CH and CRF to decrease, but the changes were not clinically significant compared with diseased and postsurgical cases. Asian individuals, who had lower baseline CH in this study, responded slower to OOK based on early uncorrected VA and overrefraction measurements.
Using primary fibroblasts in culture, we have investigated the signal transduction mechanisms by which phorbol esters, a class of tumor promoters, activate the 9E3 gene and its chemokine product the chicken chemotactic and angiogenic factor. This gene is highly stimulated by phorbol 12,13-dibutyrate (PDBu) via three pathways: (i) a small contribution through protein kinase C (the commonly recognized pathway for these tumor promoters), (ii) a contribution involving tyrosine kinases, and (iii) a larger contribution via pathways that can be interrupted by dexamethasone. All three of these pathways converge into the mitogen-activated protein kinases, MEK1/ERK2. Using a luciferase reporter system, we show that although both the AP-1 and PDRIIkB (a NFB-like factor in chickens) response elements are capable of activation in these normal cells, regions of the 9E3 promoter containing them are unresponsive to PDBu stimulation. In contrast, we show for the first time that activation by PDBu occurs through a segment of the promoter containing Elk1 response elements; deletion and mutation of these elements abrogates 9E3/ chicken chemotactic and angiogenic factor expression. Electrophoretic mobility shift assays and functional studies using PathDetect systems show that stimulation of the cells by phorbol esters leads to activation of the Elk1 transcription factor, which binds to its element in the 9E3 promoter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.