Energy transport inside the giant magnetosphere at Jupiter is poorly understood. Since the Pioneer era, mysterious quasiperiodic (QP) pulsations have been reported. Early publications successfully modeled case studies of ∼60‐min (rest‐frame) pulsations as standing Alfvén waves. Since then, the range of periods has increased to ∼10–60 min, spanning multiple data sets. More work is required to assess whether a common QP modulation mechanism is capable of explaining the full range of wave periods. Here we have modeled standing Alfvén waves to compute the natural periods of the Jovian magnetosphere, for varying plasma sheet thicknesses, field line lengths, and Alfvén speeds. We show that variability in the plasma sheet produces eigenperiods that are consistent with all the reported observations. At least the first half‐dozen harmonics (excluding the fundamental) may contribute but are indistinguishable in our analysis. We suggest that all QP pulsations reported at Jupiter may be explained by standing Alfvén waves.
Jupiter’s rapidly rotating, strong magnetic field provides a natural laboratory that is key to understanding the dynamics of high-energy plasmas. Spectacular auroral x-ray flares are diagnostic of the most energetic processes governing magnetospheres but seemingly unique to Jupiter. Since their discovery 40 years ago, the processes that produce Jupiter’s x-ray flares have remained unknown. Here, we report simultaneous in situ satellite and space-based telescope observations that reveal the processes that produce Jupiter’s x-ray flares, showing surprising similarities to terrestrial ion aurora. Planetary-scale electromagnetic waves are observed to modulate electromagnetic ion cyclotron waves, periodically causing heavy ions to precipitate and produce Jupiter’s x-ray pulses. Our findings show that ion aurorae share common mechanisms across planetary systems, despite temporal, spatial, and energetic scales varying by orders of magnitude.
Quasiperiodic pulsations in the ultralow‐frequency band are ubiquitously observed in the Jovian magnetosphere, but their source and distribution have until now been a mystery. Standing Alfvén waves on magnetic field lines have been proposed to explain these pulsations and their large range in observed periods. However, in situ evidence in support of this mechanism has been scarce. Here we use magnetometer data from the Galileo spacecraft to report first evidence of a multiple‐harmonic ultralow‐frequency event in Jupiter's equatorial plasma sheet. The harmonic periods lie in the 4‐ to 22‐min range, and the nodal structure is confined to the plasma sheet. Polarization analysis reveals several elliptically polarized odd harmonics and no presence of even harmonics. The harmonic periods, their polarization, and the confinement of the wave to the plasma sheet are strong evidence supporting the standing Alfvén wave model. Multiple‐harmonic waves therefore potentially explain the full range of periods in quasiperiodic pulsations in Jupiter's magnetosphere.
To help understand and determine the driver of jovian auroral X‐rays, we present the first statistical study to focus on the morphology and dynamics of the jovian northern hot spot (NHS) using Chandra data. The catalog we explore dates from December 18, 2000 up to and including September 8, 2019. Using a numerical criterion, we characterize the typical and extreme behavior of the concentrated NHS emissions across the catalog. The mean power of the NHS is found to be 1.91 GW with a maximum brightness of 2.02 Rayleighs (R), representing by far the brightest parts of the jovian X‐ray spectrum. We report a statistically significant region of emissions at the NHS center which is always present, the averaged hot spot nucleus (AHSNuc), with mean power of 0.57 GW and inferred average brightness of ∼1.2 R. We use a flux equivalence mapping model to link this distinct region of X‐ray output to a likely source location and find that the majority of mappable NHS photons emanate from the pre‐dusk to pre‐midnight sector, coincident with the dusk flank boundary. A smaller cluster maps to the noon magnetopause boundary, dominated by the AHSNuc, suggesting that there may be multiple drivers of X‐ray emissions. On application of timing analysis techniques (Rayleigh, Monte Carlo, Jackknife), we identify several instances of statistically significant quasi‐periodic oscillations (QPOs) in the NHS photons ranging from ∼2.3 to 36.4 min, suggesting possible links with ultra‐low frequency activity on the magnetopause boundary (e.g., dayside reconnection, Kelvin‐Helmholtz instabilities).
Jupiter's giant magnetosphere is a complex system seldom in a configuration approximating steady state, and a clear picture of its governing dynamics remains elusive. Crucial to understanding how the magnetosphere behaves on a large scale are disturbances to the system on length-scales comparable to the cavity, which are communicated by magnetohydrodynamic waves in the ultralow-frequency band (<1 mHz). In this study we used magnetometer data from multiple spacecraft to perform the first global heritage survey of these waves in the magnetosphere. To map the equatorial region, we relied on the large local-time coverage provided by the Galileo spacecraft. Flyby encounters performed by Voyager 1 and 2, Pioneer 10 and 11, and Ulysses provided local-time coverage of the dawn sector. We found several hundred events where significant wave power was present, with periods spanning ∼5-60 min. The majority of events consisted of multiple superposed discrete periods. Periods at ∼15, ∼30, and ∼40 min dominated the event-averaged spectrum, consistent with the spectra of quasi-periodic pulsations often reported in the literature. Most events were clustered in the outer magnetosphere close to the magnetopause at noon and dusk, suggesting that an external driving mechanism may dominate. The most energetic events occurred close to the planet, though more sporadically, indicating an accumulation of wave energy in the inner magnetosphere or infrequent impulsive drivers in the region. Our findings suggest that dynamics of the system at large scales is modulated by this diverse population of waves, which permeate the magnetosphere through several cavities and wave guides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.