Introduction: Breast cancer is one of the leading cause of cancer deaths in women. Metastasis in BC is caused by immuno- surveillance deficiency, such NK cell maturation, low NK activity and decreasing cytotoxicity. This study was performed to improve activating receptors and cytotoxicity of NK cells using interleukins (ILs).
Methods: Human recombinant IL-2, -15, and -18 were used to induce NK cells. We measured the activating and inhibiting receptors, proliferation activity of NK cells, and the cytotoxicity of NK cells on BC cells (MCF7). The effects of ILs were tested on the NK cell receptors CD314, CD158a and CD107a with flowcytometry, proliferation at various incubation times with 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and concen- trations of TNF-α and IFN-γ by NK cells with ELISA.
Results: ILs increased NK cell receptor levels (CD314, CD158a, and CD107a) at 24 hours of incubation. ILs increased NK cell viability, which increased with longer incubation. Moreover, ILs-induced NK cells inhibited proliferation in MCF7 cells, as well as increased TNF-α, IFN-γ, PRF1 and GzmB secretion.
Conclusion: IL-2, IL-15, and IL-18 improved activating receptors and proliferation of NK cells. IL-induced NK cells in- creased TNF-α, IFN-γ, PRF1 and GzmB secretion and cytotoxic activity on BC cells. High NK cell numbers increased BC cell growth inhibition.
Keywords: Activator; breast cancer; interleukins; natural killer; receptor.
Osteoarthritis (OA) is a chronic disease of the joints and bones due to trauma or other joint-related diseases (secondary). Synovial inflammation commonly causes disturbance in joint homeostasis, which is associated with OA. Enzymes such as aggrecanase and metalloproteinase generate cartilage damage, mediated by tumor necrosis factor (TNF-α) and interleukin (IL)-1. Proinflammatory cytokines, including TNF-α, IL-1β, and IL-6, are responsible for regulation of the extracellular matrix, cartilage degradation, and apoptosis of chondrocytes. This study aimed to observe the cell viability and expression level of matrix metalloproteinases (MMP-1 and MMP-3) and tissue inhibitor metalloproteinases (TIMP-1 and TIMP-2) in human chondrocyte cells (CHON-002) induced by IL-1β. CHON-002 was induced with IL-1β (0.1, 1 and 10 ng/mL) as an OA model. The viability of the cells was measured with a 3-(4,5dimethylthiazol-2-yl)-5-(3-carboxyme-thoxyphenyl)-2-(4-sulfophenyl)-2H-tetra zolium (MTS) assay, while expression of MMP-1, MMP-3, TIMP-1, and TIMP-2, was evaluated by RT-PCR. The viability of IL-1β-induced CHON-002 (CHON-002-IL-1β) cells at day 1 and 5 showed that treatment with up to 10 ng/mL of IL-1β was not toxic. Expression of TIMP-1 and TIMP-2 in CHON-002-IL-1β was lower compared to control, while that of MMP-1 and MMP-3 was higher compared to control. These results indicate that CHON-002 treated with 10 ng/mL IL-1β has expression patterns consistent with chondrocyte damage, so the CHON-002-IL-1β system may serve as a model for MMP induction in OA.
Breast cancer (BC) is the most prevalent type of cancer among women and one of the major causes of cancer mortality in women. Metastasis in breast cancer (BC) occurs due to immunosurveillance deficiency, including impairment of natural killer (NK) cell maturation. Conditioned medium (CM) from human Wharton's jelly mesenchymal stem cells (hWJMSC-CM) is known to possess anticancer activity. The CM of co-culture of human recombinant IL-2 treated NK cells and hWJMSCs is expected to boost anticancer activity toward BC cells which can be analyzed from the effect of CM towards secretion of effector molecules and expression of BC cell apoptosis-related genes, and cytotoxic granules in human recombinant IL-2 treated NK (IL-2 NK) and hWJMSCs (IL-2 hWJMSCs). TNF-α, IFN-γ, perforin, granzyme were measured by ELISA, while the inhibition of cell proliferation was measured by MTS assay and BC cell apoptosis by flow cytometry and apoptotic gene expression by RTPCR. CM from co-cultured hWJMSCs and IL-2 NK cells inhibited NK and BC cell proliferation, increased expression of Bax and p53 and decreased the number of Bcl-2 in BC cells. In conclusion, CM of co-culture IL-2 treated NK cells and hWJMSCs induce apoptosis in BC cells as indicated by increased Bax and p53 expression and decreased Bcl-2 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.