Inspired by nature, tunable wettability has attracted a lot of attention in both academia and industry. Various methods of polymer surface tailoring have been studied to control the changes in wetting behavior. Polymers with a precisely controlled wetting behavior in a specific environment are blessed with a wealth of opportunities and potential applications exploitable in biomaterial engineering. Controlled wetting behavior can be obtained by combining surface chemistry and morphology. Plasma assisted polymer surface modification technique has played a significant part to control surface chemistry and morphology, thus improving the surface wetting properties of polymers in many applications. This review focuses on plasma polymerization and investigations regarding surface chemistry, surface wettability and coating kinetics, as well as coating stability. We begin with a brief overview of plasma polymerization; this includes growth mechanisms of plasma polymerization and influence of plasma parameters. Next, surface wettability and theoretical background structures and chemistry of superhydrophobic and superhydrophilic surfaces are discussed. In this review, a summary is made of recent work on tunable wettability by tailoring surface chemistry with physical appearance (i.e. substrate texture). The formation of smart polymer coatings, which adjust their surface wettability according to outside environment, including, pH, light, electric field and temperature, is also discussed. Finally, the applications of tunable wettability and pH responsiveness of polymer coatings in real life are addressed. This review should be of interest to plasma surface science communality particularly focused controlled wettability of smart polymer surfaces.
Radioresistance is one of the primary causes responsible for therapeutic failure and recurrence of cancer. It is well documented that reactive oxygen species (ROS) contribute to the initiation and development of gastric cancer (GC), and the levels of ROS are significantly increased in patients with GC accompanied with abnormal expressions of multiple inflammatory factors. It is also well documented that ROS can activate cancer cells and inflammatory cells, stimulating the release of a variety of inflammatory cytokines, which subsequently mediates the tumor microenvironment (TME) and promotes cancer stem cell (CSC) maintenance as well as renewal and epithelial-mesenchymal transition (EMT), ultimately resulting in radioresistance and recurrence of GC.
During laser ablation, the spectral emission intensity, plasma temperature and electron density increased significantly with increasing sample temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.