Snowfall may have different stable isotopic compositions compared with rainfall, allowing its contribution to potentially be tracked through the hydrological cycle. This review summarizes the state of knowledge of how different hydrometeorological processes affect the isotopic composition of snow in its different forms (snowfall, snowpack, and snowmelt), and, through selected examples, discusses how stable water isotopes can provide a better understanding of snow hydrological processes. A detailed account is given of how the variability in isotopic composition of snow changes from precipitation to final melting. The effect of different snow ablation processes (sublimation, melting, and redistribution by wind or avalanches) on the isotope ratios of the underlying snowpack are also examined. Insights into the role of canopy in snow interception processes, and how the isotopic composition in canopy underlying snowpacks can elucidate the exchanges therein are discussed, as well as case studies demonstrating the usefulness of stable water isotopes to estimate seasonality in the groundwater recharge. Rain-on-snow floods illustrate how isotopes can be useful to estimate the role of preferential flow during heavy spring rains. All these examples point to the complexity of snow hydrologic processes and demonstrate that an isotopic approach is useful to quantify snow contributions throughout the water cycle, especially in high-elevation and highlatitude catchments, where such processes are most pronounced. This synthesis concludes by tracing a snow particle along its entire hydrologic life cycle, highlights the major practical challenges remaining in snow hydrology and discusses future research directions.
Snowfall may have different stable isotopic compositions compared with rainfall, allowing its contribution to potentially be tracked through the hydrological cycle. This review summarizes the state of knowledge of how different hydrometeorological processes affect the isotopic composition of snow in its different forms (snowfall, snowpack, and snowmelt), and, through selected examples, discusses how stable water isotopes can provide a better understanding of snow hydrological processes. A detailed account is given of how the variability in isotopic composition of snow changes from precipitation to final melting. The effect of different snow ablation processes (sublimation, melting, and redistribution by wind or avalanches) on the isotope ratios of the underlying snowpack are also examined. Insights into the role of canopy in snow interception processes, and how the isotopic composition in canopy underlying snowpacks can elucidate the exchanges therein are discussed, as well as case studies demonstrating the usefulness of stable water isotopes to estimate seasonality in the groundwater recharge. Rain-on-snow floods illustrate how isotopes can be useful to estimate the role of preferential flow during heavy spring rains. All these examples point to the complexity of snow hydrologic processes and demonstrate that an isotopic approach is useful to quantify snow contributions throughout the water cycle, especially in high-elevation and highlatitude catchments, where such processes are most pronounced. This synthesis concludes by tracing a snow particle along its entire hydrologic life cycle, highlights the major practical challenges remaining in snow hydrology and discusses future research directions.
Estimation of young water fractions (F yw), defined as the fraction of water in a stream younger than approximately 2-3 months, provides key information for water resource management in catchments where runoff is dominated by snowmelt. Knowing the average dependence of summer flow on winter precipitation is an essential context for comparing regional drought severity and provides the hydrological template for downstream water users and ecosystems. However, F yw estimation based on seasonal signals of stable isotopes of oxygen and hydrogen has not yet explicitly addressed how to parsimoniously
Abstract. The last couple of decades have seen the outburst of a number of satellite-based precipitation products with Tropical Rainfall Measuring Mission (TRMM) as the most widely used for hydrologic applications. Transition of TRMM into the Global Precipitation Measurement (GPM) promises enhanced spatio-temporal resolution along with upgrades to sensors and rainfall estimation techniques. The dependence of systematic error components in rainfall estimates of the Integrated Multi-satellitE Retrievals for GPM (IMERG), and their variation with climatology and topography, was evaluated over 86 basins in India for year 2014 and compared with the corresponding (2014) and retrospective (1998-2013) TRMM estimates. IMERG outperformed TRMM for all rainfall intensities across a majority of Indian basins, with significant improvement in low rainfall estimates showing smaller negative biases in 75 out of 86 basins. Low rainfall estimates in TRMM showed a systematic dependence on basin climatology, with significant overprediction in semiarid basins, which gradually improved in the higher rainfall basins. Medium and high rainfall estimates of TRMM exhibited a strong dependence on basin topography, with declining skill in higher elevation basins. The systematic dependence of error components on basin climatology and topography was reduced in IMERG, especially in terms of topography. Rainfall-runoff modeling using the Variable Infiltration Capacity (VIC) model over two flood-prone basins (Mahanadi and Wainganga) revealed that improvement in rainfall estimates in IMERG did not translate into improvement in runoff simulations. More studies are required over basins in different hydroclimatic zones to evaluate the hydrologic significance of IMERG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.