Privacy-preserving machine learning (PPML) via Secure Multi-party Computation (MPC) has gained momentum in the recent past. Assuming a minimal network of pair-wise private channels, we propose an efficient four-party PPML framework over rings ℤ2ℓ, FLASH, the first of its kind in the regime of PPML framework, that achieves the strongest security notion of Guaranteed Output Delivery (all parties obtain the output irrespective of adversary’s behaviour). The state of the art ML frameworks such as ABY3 by Mohassel et.al (ACM CCS’18) and SecureNN by Wagh et.al (PETS’19) operate in the setting of 3 parties with one malicious corruption but achieve the weaker security guarantee of abort. We demonstrate PPML with real-time efficiency, using the following custom-made tools that overcome the limitations of the aforementioned state-of-the-art– (a) dot product, which is independent of the vector size unlike the state-of-the-art ABY3, SecureNN and ASTRA by Chaudhari et.al (ACM CCSW’19), all of which have linear dependence on the vector size. (b) Truncation and MSB Extraction, which are constant round and free of circuits like Parallel Prefix Adder (PPA) and Ripple Carry Adder (RCA), unlike ABY3 which uses these circuits and has round complexity of the order of depth of these circuits. We then exhibit the application of our FLASH framework in the secure server-aided prediction of vital algorithms– Linear Regression, Logistic Regression, Deep Neural Networks, and Binarized Neural Networks. We substantiate our theoretical claims through improvement in benchmarks of the aforementioned algorithms when compared with the current best framework ABY3. All the protocols are implemented over a 64-bit ring in LAN and WAN. Our experiments demonstrate that, for MNIST dataset, the improvement (in terms of throughput) ranges from 24 × to 1390 × over LAN and WAN together.
Machine learning has started to be deployed in fields such as healthcare and finance, which involves dealing with a lot of sensitive data. This propelled the need for and growth of privacy-preserving machine learning (PPML). We propose an actively secure four-party protocol (4PC), and a framework for PPML, showcasing its applications on four of the most widely-known machine learning algorithms-Linear Regression, Logistic Regression, Neural Networks, and Convolutional Neural Networks. Our 4PC protocol tolerating at most one malicious corruption is practically more efficient than Gordon et al. (ASIACRYPT 2018) as the 4th party in our protocol is not active in the online phase, except input sharing and output reconstruction stages. Concretely, we reduce the online communication as compared to them by 1 ring element. We use the protocol to build an efficient mixed-world framework (Trident) to switch between the Arithmetic, Boolean, and Garbled worlds. Our framework operates in the offline-online paradigm over rings and is instantiated in an outsourced setting for machine learning, where the data is secretly shared among the servers. Also, we propose conversions especially relevant to privacy-preserving machine learning. With the privilege of having an extra honest party, we outperform the current state-of-the-art ABY3 (for three parties), in terms of both rounds as well as communication complexity. The highlights of our framework include using minimal number of expensive circuits overall as compared to ABY3. This can be seen in our technique for truncation, which does not affect the online cost of multiplication and removes the need for any circuits in the offline phase. Our B2A conversion has an improvement of 7× in rounds and 18× in the communication complexity. In addition to these, all of the special conversions for machine learning, e.g. Secure Comparison, achieve constant round complexity. The practicality of our framework is argued through improvements in the benchmarking of the aforementioned algorithms when compared with ABY3. All the protocols are implemented over a 64-bit ring in both LAN and WAN settings. Our improvements go up to 187× for the training phase and 158× for the prediction phase when observed over LAN and WAN.
Recommender systems based on collaborative filtering are highly vulnerable to data poisoning attacks, where a determined attacker injects fake users with false user-item feedback, with an objective to either corrupt the recommender system or promote/demote a target set of items. Recently, differential privacy was explored as a defense technique against data poisoning attacks in the typical machine learning setting. In this paper, we study the effectiveness of differential privacy against such attacks on matrix factorization based collaborative filtering systems. Concretely, we conduct extensive experiments for evaluating robustness to injection of malicious user profiles by simulating common types of shilling attacks on real-world data and comparing the predictions of typical matrix factorization with differentially private matrix factorization.
The concrete efficiency of secure computation has been the focus of many recent works. In this work, we present concretely-efficient protocols for secure 3-party computation (3PC) over a ring of integers modulo 2 ℓ tolerating one corruption, both with semi-honest and malicious security. Owing to the fact that computation over ring emulates computation over the real-world system architectures, secure computation over ring has gained momentum of late.Cast in the offline-online paradigm, our constructions present the most efficient online phase in concrete terms. In the semi-honest setting, our protocol requires communication of 2 ring elements per multiplication gate during the online phase, attaining a per-party cost of less than one element. This is achieved for the first time in the regime of 3PC. In the malicious setting, our protocol requires communication of 4 elements per multiplication gate during the online phase, beating the state-of-the-art protocol by 5 elements. Realized with both the security notions of selective abort and fairness, the malicious protocol with fairness involves slightly more communication than its counterpart with abort security for the output gates alone.We apply our techniques from 3PC in the regime of secure serveraided machine-learning (ML) inference for a range of prediction functions-linear regression, linear SVM regression, logistic regression, and linear SVM classification. Our setting considers a model-owner with trained model parameters and a client with a query, with the latter willing to learn the prediction of her query based on the model parameters of the former. The inputs and computation are outsourced to a set of three non-colluding servers. Our constructions catering to both semi-honest and the malicious world, invariably perform better than the existing constructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.