PurposeThis paper aims to conduct a systematic literature review of the research in the field of Artificial Intelligence (AI) and Big Data Analytics (BDA) in Supply Chain Risk Management (SCRM). Finally, future research directions in this field have been suggested.Design/methodology/approachThe papers were searched using a set of keywords in the SCOPUS database. These papers were filtered using the Title abstract keywords principle. Further, more papers were found using the forward-backward referencing method. The finalized papers were then classified into eight categories.FindingsThe previous papers in AI and BDA in SCRM were studied. These papers emphasized various modelling and application techniques for AI and BDA in making the supply chain (SC) more resilient. It was found that more research has been done into conceptual modelling rather than real-life applications. It was seen that the use of AI-based techniques and structural equation modelling was prominent.Practical implicationsAI and BDA help build the risk profile, which will guide the decision-makers and risk managers make their decisions quickly and more effectively, reducing the risks on the SC and making it resilient. Other than this, they can predict the risks in disasters, epidemics and any further disruption. They also help select the suppliers and location of the various elements of the SC to reduce the lead times.Originality/valueThe paper suggests various future research directions that fellow researchers can explore. None of the previous research examined the role of BDA and AI in SCRM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.