The documentation of proteinaceous soft tissues in fossils from deep time remains controversial. Often this has been attributed to the laboratory or other modes of modern contamination. Here we provide incontrovertible evidence for the preservation of proteinaceous moieties in Maastrichtian dinosaur eggshell using pyrolysis‐GC×GC‐TOFMS. The presence of nitrogen‐bearing organic molecules along with diketodipyrrole suggests that the proteinaceous moieties can survive diagenesis. The preservation of these proteinaceous moieties has been attributed to deposition in a palustrine flat environment under subaerial conditions and entrapment of organic material by the eggshell calcitic units. The present study demonstrates that the preservation of nitrogen‐bearing macromolecules in Mesozoic fossil remains is not impossible provided that the depositional environments and diagenetic processes are propitious. The survival of nitrogen‐bearing macromolecules in deep time under subaerial depositional settings will open a new avenue of research on soft tissue preservation.
Pathologic eggs have been documented in the amniote eggs of birds, turtles, and dinosaurs. These eggs occur either in the form of one egg within another egg, a condition known as ovum-in-ovo or multi-shelled eggs showing additional pathological eggshell layer/s besides the primary shell layer. Though multi-shelled eggs and eggshells were previously recorded only in reptiles and ovum-in-ovo eggs in birds, now it has been shown that multi-shelled egg pathology occurs in birds as well. However, no ovum-in-ovo egg has been reported in dinosaurs or for that matter in other reptiles. Here we describe an ovum-in-ovo pathological egg from a titanosaurid dinosaur nest from the Upper Cretaceous Lameta Formation of western Central India which makes it the first report of this pathology in dinosaurs. Birds possess a specialized uterus while other amniotes have a generalized uterus. However, alligators and crocodiles retain a specialized uterus like birds along with a reptilian mode of egg-laying. The discovery of ovum-in-ovo egg from a titanosaurid dinosaur nest suggests that their oviduct morphology was similar to that of birds opening up the possibility for sequential laying of eggs in this group of sauropod dinosaurs. This new find underscores that the ovum-in-ovo pathology is not unique to birds and sauropods share a reproductive behavior very similar to that of other archosaurs.
The Upper Cretaceous (Maastrichtian) Lameta Formation is well-known for its osteological and oological remains of sauropods from the eastern and western parts of the Narmada Valley, central India. The newly documented ninety-two titanosaur clutches from Dhar District (Madhya Pradesh State, central India) add further to this extensive data. Previously parataxonomy of these titanosaur clutches was carried out with a few brief reports on palaeobiological and taphonomic aspects. The quantitative data collected from the new clutches (this study) opens avenues to additionally understand more about titanosaur palaeobiology and to qualitatively understand preservation and taphonomical aspects of their egg clutches. Herein, we document 256 eggs and three clutch patterns (viz. circular, combination, linear) that are assignable to six oospecies. The high oospecies diversity points to a possible high diversity in titanosaur taxa in the Indian sub-continent though it is not reflected in titanosaurid body fossils. All the macro- and micro-structures helped in understanding egg deformation and preservation from a taphonomic point of view. Additionally, a pathologic egg documented from the study area helped in understanding the reproductive biology of titanosaurs, such as the possibility of segmented oviduct and sequential laying of eggs by titanosaurs. In addition, we made an attempt to infer aspects such as egg burial, absence of parental care, colonial nesting behavior. All the egg clutches were observed within sandy limestone and calcareous sandstone lithologies that occur in scattered outcrops with rocks showing floating siliciclastic grains in a micritic groundmass. Further, the presence of ferruginous sandstone in the Jamniapura and Padlya regions (Dhar District, central India) is indicative of a possible alluvial/fluvial setting. The presence of grainy intraclastic fabric, alveolar-septal fabrics, brecciation and shrinkage cracks observed in the clutch-bearing rocks are indicative of a low energy-low gradient palustrine depositional condition in a fluvial/alluvial setting. Finally, we envisage that a few egg clutches of this area were laid close to lake/pond margins while most were laid away from the lake/pond margins, and thus, were hatched.
The calcitic eggshell units of amniote eggs are underlain by a soft organic layer, the Membrana Testacea (MT), which has a mesh-like texture consisting of fibrils of organic material. Because of its soft anatomy, the MT is rarely preserved in fossils and only a few fossil reports of MT are known so far. Here we report the preservation of a mineralized MT layer in titanosaur eggshells recovered from a marlstone facies interbedded with the Deccan lava flows exposed near Piplanarayanwar village of Chhindwara District, Madhya Pradesh state in Central India. The MT layer is mesh-like, resembling protein membranes of extant reptiles and the MT reported in titanosaurid eggshells of the Upper Cretaceous Anacleto Formation at Auca Mahuevo, Argentina. The presence of tendrils and fibres of calcite in the MT layer testifies to the fact that the calcium layer represents the original fibrous MT. It also supports the view that fossilization of soft tissues like MT is possible because of the inferred anaerobic conditions that prevailed during the deposition of Piplanarayanwar intertrappean sediments in lacustrine or paludal bodies in a coastal-plain setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.