Altered activity of the proteolytic machine-the 26S proteasome is observed in many disease conditions. Hence, either inhibition or activation of the 26S proteasome is thought to be a novel therapy for treatment of certain diseases such as cancer and neurodegenerative disorders. In this study, we tested the potential of cinnamon and one of its active ingredients, procyanidin-B2 (PCB2), in inhibiting the catalytic activities of the proteasome and suppressing prostate cancer cell growth. Proteasome activities were measured using fluorogenic substrates specific for the different enzymatic activities of the 26S proteasome by flourometry. Cell viability was assessed using the 3-[4, 5-dimethylthiazol-2-yl]-2.5-diphenyl-tetrazolium bromide assay, while apoptosis was examined by Hoechst and propidium iodide staining and caspase-3 activity. Both, the cinnamon extract and its PCB2-enriched F2 fraction inhibited the catalytic activities of the purified proteasome and the proteasome in cancer cells but not in normal cells. Furthermore, cinnamon and its active component decreased cell proliferation of human prostate cancer cells but not normal lung cells, decreased expression of anti-apoptotic and angiogenic markers in prostate cancer cell lysates. These results demonstrate that cinnamon extract and its PCB2-enriched fraction act as proteasome inhibitors and have prospects as anti-cancer agents. © 2018 IUBMB Life, 70(5):445-457, 2018.
Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease characterized by irreversible scarring of the lung parenchyma leading to dyspnea, progressive decline in lung function, and respiratory failure. We analyzed lung transcriptomic data from independent IPF cohorts using weighted gene co-expression network analysis (WGCNA) to identify gene modules based on their preservation status in these cohorts. The consensus gene modules were characterized by leveraging existing clinical and molecular data such as lung function, biological processes, pathways, and lung cell types. From a total of 32 consensus gene modules identified, two modules were found to be significantly correlated with the disease, lung function, and preserved in other IPF datasets. The upregulated gene module was enriched for extracellular matrix, collagen metabolic process, and BMP signaling while the downregulated module consisted of genes associated with tube morphogenesis, blood vessel development, and cell migration. Using a combination of connectivity-based and trait-based significance measures, we identified and prioritized 103 “hub” genes (including 25 secretory candidate biomarkers) by their similarity to known IPF genetic markers. Our validation studies demonstrate the dysregulated expression of CRABP2, a retinol-binding protein, in multiple lung cells of IPF, and its correlation with the decline in lung function.
Background: There are two US Food and Drug Administration (FDA)-approved drugs, pirfenidone and nintedanib, for treatment of patients with idiopathic pulmonary fibrosis (IPF). However, neither of these drugs provide a cure. In addition, both are associated with several drug-related adverse events. Hence, the pursuit for newer IPF therapeutics continues. Recent studies show that joint analysis of systems-biology-level information with drug–disease connectivity are effective in discovery of biologically relevant candidate therapeutics. Methods: Publicly available gene expression signatures from patients with IPF were used to query a large-scale perturbagen signature library to discover compounds that can potentially reverse dysregulated gene expression in IPF. Two methods were used to calculate IPF–compound connectivity: gene expression-based connectivity and feature-based connectivity. Identified compounds were further prioritized if their shared mechanism(s) of action were IPF-related. Results: We found 77 compounds as potential candidate therapeutics for IPF. Of these, 39 compounds are either FDA-approved for other diseases or are currently in phase II/III clinical trials suggesting their repurposing potential for IPF. Among these compounds are multiple receptor kinase inhibitors (e.g. nintedanib, currently approved for IPF, and sunitinib), aurora kinase inhibitor (barasertib), epidermal growth factor receptor inhibitors (erlotinib, gefitinib), calcium channel blocker (verapamil), phosphodiesterase inhibitors (roflumilast, sildenafil), PPAR agonists (pioglitazone), histone deacetylase inhibitors (entinostat), and opioid receptor antagonists (nalbuphine). As a proof of concept, we performed in vitro validations with verapamil using lung fibroblasts from IPF and show its potential benefits in pulmonary fibrosis. Conclusions: As about half of the candidates discovered in this study are either FDA-approved or are currently in clinical trials for other diseases, rapid translation of these compounds as potential IPF therapeutics is possible. Further, the integrative connectivity analysis framework in this study can be adapted in early phase drug discovery for other common and rare diseases with transcriptomic profiles. The reviews of this paper are available via the supplemental material section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.