Primary fibroblasts established from embryos of NAD-dependent mitochondrial methylenetetrahydrofolate dehydrogenase-cyclohydrolase (NMDMC) knockout mice were spontaneously immortalized or transformed with SV40 Large T antigen. Mitotracker Red CMXRos staining of the cells indicates the presence of intact mitochondria with a membrane potential. The nmdmc(-/-) cells are auxotrophic for glycine, demonstrating that NMDMC is the only methylenetetrahydrofolate dehydrogenase normally expressed in the mitochondria of these cell lines. Growth of null mutant but not wild type cells on complete medium with dialyzed serum is stimulated about 2-fold by added formate or hypoxanthine. Radiolabeling experiments demonstrated a 3-10 x enhanced incorporation of radioactivity into DNA from formate relative to serine by nmdmc(-/-) cells. The generation of one-carbon units by mitochondria in nmdmc(-/-) cells is completely blocked, and the cytoplasmic folate pathways alone are insufficient for optimal purine synthesis. The results demonstrate a metabolic role for NMDMC in supporting purine biosynthesis. Despite the recognition of these metabolic defects in the mutant cell lines, the phenotype of nmdmc(-/-) embryos that begin to die at E13.5 is not improved when pregnant dams are given a glycine-rich diet or daily injections of sodium formate.
Groucho (Gro)/TLE transcriptional corepressors are involved in a variety of developmental mechanisms, including neuronal differentiation. They contain a conserved C-terminal WD40 repeat domain that mediates interactions with several DNA-binding proteins. In particular, Gro/TLE1 interacts with forkhead transcription factor brain factor 1 (BF-1; also termed FoxG1). BF-1 is an essential regulator of neuronal differentiation during cerebral cortex development and represses transcription together with Gro/TLE1. Gro/TLE-related gene product 6 (Grg6) shares with Gro/TLEs a conserved WD40 repeat domain but is more distantly related at its N-terminal half. We demonstrate that Grg6 is expressed in cortical neural progenitor cells and interacts with BF-1. In contrast to Gro/TLE1, however, Grg6 does not promote, but rather suppresses, BF-1-mediated transcriptional repression. Consistent with these observations, Grg6 interferes with the binding of Gro/TLE1 to BF-1 and does not repress transcription when targeted to DNA. Moreover, coexpression of Grg6 and BF-1 in cortical progenitor cells leads to a decrease in the number of proliferating cells and increased neuronal differentiation. Conversely, Grg6 knockdown by RNA interference causes decreased neurogenesis. These results identify a new role for Grg6 in cortical neuron development and establish a functional link between Grg6 and BF-1.
The Mthfd1 gene encoding the cytoplasmic methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase enzyme (DCS) was inactivated in embryonic stem cells. The null embryonic stem cells were used to generate spontaneously immortalized fibroblast cell lines that exhibit the expected purine auxotrophy. Elimination of these cytoplasmic activities allowed for the accurate assessment of similar activities encoded by other genes in these cells. A low level of 10-formyltetrahydrofolate synthetase was detected and was shown to be localized to mitochondria. However, NADP-dependent methylenetetrahydrofolate dehydrogenase activity was not detected. Northern blot analysis suggests that a recently identified mitochondrial DCS (Prasannan, P., Pike, S., Peng, K., Shane, B., and Appling, D. R. (2003) J. Biol. Chem. 278, 43178 -43187) is responsible for the synthetase activity. The lack of NADP-dependent dehydrogenase activity suggests that this RNA may encode a monofunctional synthetase. Moreover, examination of the primary structure of this novel protein revealed mutations in key residues required for dehydrogenase and cyclohydrolase activities. This monofunctional synthetase completes the pathway for the production of formate from formyltetrahydrofolate in the mitochondria in our model of mammalian one-carbon folate metabolism in embryonic and transformed cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.