Adverse remodeling following myocardial infarction (MI) leading to heart failure is driven by an imbalanced resolution of inflammation. The macrophage cell is an important control of post-MI inflammation, as macrophage subtypes secrete mediators to either promote inflammation and extend injury (M1 phenotype) or suppress inflammation and promote scar formation (M2 phenotype). We have previously shown that the absence of caveolin-1 (Cav1), a membrane scaffolding protein, is associated with adverse cardiac remodeling in mice, but the mechanisms responsible remain to be elucidated. We explore here the role of Cav1 in the activation of macrophages using wild type C57BL6/J (WT) and Cav1tm1Mls/J (Cav1−/−) mice. By echocardiography, cardiac function was comparable between WT and Cav1−/− mice at 3 days post-MI. In the absence of Cav1, there were a surprisingly higher percentage of M2 macrophages (arginase-1 positive) detected in the infarcted zone. Conversely, restoring Cav1 function after MI in WT mice by adding back the Cav1 scaffolding domain reduced the M2 activation profile. Further, adoptive transfer of Cav1 null macrophages into WT mice on d3 post-MI exacerbated adverse cardiac remodeling at d14 post-MI. In vitro studies revealed that Cav1 null macrophages had a more pronounced M2 profile activation in response to IL-4 stimulation. In conclusion, Cav1 deletion promotes an array of maladaptive repair processes after MI, including increased TGF-β signaling, increased M2 macrophage infiltration and dysregulation of the M1/M2 balance. Our data also suggest that cardiac remodeling can be improved by therapeutic intervention regulating Cav1 function during the inflammatory response phase.
Angiogenesis associates with poor outcome in diffuse large B-cell lymphoma (DLBCL), but the contribution of the lymphoma cells to this process remains unclear. Addressing this knowledge gap may uncover unsuspecting proangiogenic signaling nodes and highlight alternative antiangiogenic therapies. Here we identify the second messenger cyclic-AMP (cAMP) and the enzyme that terminates its activity, phosphodiesterase 4B (PDE4B), as regulators of B-cell lymphoma angiogenesis. We first show that cAMP, in a PDE4B-dependent manner, suppresses PI3K/AKT signals to down-modulate VEGF secretion and vessel formation in vitro. Next, we create a novel mouse model that combines the lymphomagenic Myc transgene with germline deletion of Pde4b. We show that lymphomas developing in a Pde4b-null background display significantly lower microvessel density in association with lower VEGF levels and PI3K/AKT activity. We recapitulate these observations by treating lymphoma-bearing mice with the FDA-approved PDE4 inhibitor Roflumilast. Lastly, we show that primary human DLBCLs with high PDE4B expression display significantly higher microvessel density. Here, we defined an unsuspected signaling circuitry in which the cAMP generated in lymphoma cells downmodulates PI3K/AKT and VEGF secretion to negatively influence vessel development in the microenvironment. These data identify PDE4 as an actionable antiangiogenic target in DLBCL.
Growing evidence suggests that microRNAs facilitate the cross-talk between transcriptional modules and signal transduction pathways. MYC and NOTCH1 contribute to the pathogenesis of lymphoid malignancies. NOTCH induces MYC, connecting two signaling programs that enhance oncogenicity. Here we show that this relationship is bidirectional and that MYC, via a microRNA intermediary, modulates NOTCH. MicroRNA-30a, a member of family of microRNAs that are transcriptionally suppressed by MYC, directly binds to and inhibits NOTCH1 and NOTCH2 expression. Using a murine model and genetically modified human cell lines, we confirmed that microRNA-30a influences NOTCH expression in a MYC-dependent fashion. In turn, through genetic modulation, we demonstrated that intracellular NOTCH1 and NOTCH2, by inducing MYC, suppressed microRNA-30a. Conversely, pharmacological inhibition of NOTCH decreased MYC expression, and ultimately de-repressedmicroRNA-30a. Examination of genetic models of gain and loss of microRNA-30a in diffuse large B-cell lymphoma (DLBCL) and T-acute lymphoblastic leukemia (T-ALL) cells suggested a tumor suppressive role for this microRNA. Finally, the activity of the microRNA-30a-NOTCH-MYC loop was validated in primary DLBCL and T-ALL samples. These data define the presence of a microRNA-mediated regulatory circuitry that may modulate the oncogenic signals originating from NOTCH and MYC.
The release of hemoglobin (Hb) occurs in some infectious and autoimmune diseases characterized by inflammation. As levels of haptoglobin (Hp) fall, free Hb can cause pathology. Humoral autoreactivity to human Hb was demonstrated in the sera of systemic lupus erythematosus (SLE), leishmania and malaria patients. Serum anti-murine Hb antibody levels in lupus-prone mice also exhibited an age-dependent increase, with progressive organ sequestration; significant isotypic correlation was observed with antidsDNA antibodies. A suggestive link between anti-Hb and anti-Sm responses was observed: Human lupus sera expressing anti-Sm antibody reactivity preferentially contained heightened levels of anti-Hb autoantibodies, and immunization of lupus-prone mice with Sm led to enhanced anti-murine Hb reactivity. Human and murine anti-Hb monoclonal antibodies were generated, some of which were preferentially reactive toward disease-associated methemoglobin. Epitope-mapping studies revealed evidence of intramolecular cross-reactivity. One such autoantibody synergized with Hb to enhance the secretion of pro-inflammatory cytokines while eliciting the increased production of monocyte migratory signals from endothelial cells. Preferential usage of specific variable region gene segments was not observed, although somatic mutations were documented. These studies reveal that, while the etiology, specificity and sequences of anti-Hb autoreactive antibodies can vary, they occur quite frequently and can have inflammatory consequences.
Abstract. The rapid expansion of the Internet has greatly expanded the context in which copyright infringement can occur. ISPs largely remain the gateway through which end users access the vast flow of digital content traveling throughout cyberspace. Unfortunately, ISPs are at the receiving end of many disputes involving IPR violations. The difficulty in pinpointing the real culprit has resulted in a situation where the ISP is often taken to the court.The paper examines such situations where the ISPs have been involved into litigations for third party copyright infringement across the globe. An attempt has been made to highlight the problems in such litigations and how it has affected the industry. An analysis has been made of all the laws passed by the legislations of various countries which has created a limit in the liability of ISPs in various countries if the ISP follows certain guidelines. Special emphasis has been given to the decisions of the courts of these countries after the creation of such limitations and an analysis has been done of whether such exceptions have infact served the purpose or not. Finally the paper is concluded with the basic purpose and theme of the paper which is to create an international standard guideline and in doing so the point that the individual countries legislations wont have an effective control over the problem has been highlighted and this is the reason why an international body like WIPO and WTO has to enter to control the situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.