In real world scenarios, out-of-distribution (OOD) datasets may have a large distributional shift from training datasets. This phenomena generally occurs when a trained classifier is deployed on varying dynamic environments, which causes a significant drop in performance. To tackle this issue, we are proposing an end-to-end deep multi-task network in this work. Observing a strong relationship between rotation prediction (self-supervised) accuracy and semantic classification accuracy on OOD tasks, we introduce an additional auxiliary classification head in our multi-task network along with semantic classification and rotation prediction head. To observe the influence of this addition classifier in improving the rotation prediction head, our proposed learning method is framed into bi-level optimisation problem where the upper-level is trained to update the parameters for semantic classification and rotation prediction head. In the lower-level optimisation, only the auxiliary classification head is updated through semantic classification head by fixing the parameters of the semantic classification head. The proposed method has been validated through three unseen OOD datasets where it exhibits a clear improvement in semantic classification accuracy than other two baseline methods. Our code is available on GitHub https://github.com/harshita-555/OSSL
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.