Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and represents the hepatic expression of several metabolic abnormalities of high epidemiologic relevance. Fat accumulation in the hepatocytes results in cellular fragility and risk of progression toward necroinflammation, i.e., nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Several pathways contribute to fat accumulation and damage in the liver and can also involve the mitochondria, whose functional integrity is essential to maintain liver bioenergetics. In NAFLD/NASH, both structural and functional mitochondrial abnormalities occur and can involve mitochondrial electron transport chain, decreased mitochondrial β-oxidation of free fatty acids, excessive generation of reactive oxygen species, and lipid peroxidation. NASH is a major target of therapy, but there is no established single or combined treatment so far. Notably, translational and clinical studies point to mitochondria as future therapeutic targets in NAFLD since the prevention of mitochondrial damage could improve liver bioenergetics.
Background Social containment measures imposed in Europe during the lockdown to face COVID‐19 pandemic can generate long‐term potential threats for metabolic health. Methods A cohort of 494 non‐COVID‐19 subjects living in 21 EU countries were interviewed by an anonymous questionnaire exploring anthropometric and lifestyle changes during 1‐month lockdown. A subgroup of 41 overweight/obese Italian subjects with previously diagnosed nonalcoholic fatty liver (NAFLD) joined the study following a 12‐month follow‐up period promoting weight loss by healthy lifestyle. Results During the lockdown, body weight increased in 55% of subjects (average 2.4 ± 0.9 kg). Weight change increased with age, but not baseline body mass index. Subjects living in Italy had greater weight gain than those living in other European Countries. Weight gain during the lockdown was highest in subjects reporting no physical activity, and low adherence to Mediterranean diet. In the NAFLD group, weight gain occurred in 70% of cases. Subjects reporting weight loss during lockdown had decreased fatty liver score at 3 months before the lockdown, as compared with 1 year before. Conclusions Strict measures of social containment—even short‐term—pave the way to the increased risk of metabolic abnormalities in the medium‐long term. In this context, adherence to Mediterranean diet and regular physical activity play a protective role both in terms of weight gain and fatty liver development/progression, with implication for primary and secondary prevention. When adopting measures imposing social containment, intensive educational campaigns must increase public awareness about beneficial effects of healthy lifestyles.
Intestinal permeability (IP) is essential in maintaining gut-metabolic functions in health. An unequivocal evaluation of IP, as marker of intestinal barrier integrity, however, is missing in health and in several diseases. We aimed to assess IP in the whole gastrointestinal tract according to body mass index (BMI) and liver steatosis. In 120 patients (61F:59M; mean age 45 ± SEM 1.2 years, range: 18–75), IP was distinctively studied by urine recovery of orally administered sucrose (SO, stomach), lactulose/mannitol ratio (LA/MA, small intestine), and sucralose (SA, colon). By triple quadrupole mass-spectrometry and high-performance liquid chromatography, we measured urinary recovery of saccharide probes. Subjects were stratified according to BMI as normal weight, overweight, and obesity, and answered questionnaires regarding dietary habits and adherence to the Mediterranean Diet. Liver steatosis was assessed by ultrasonography. IP at every gastrointestinal tract was similar in both sexes and decreased with age. Stomach and small intestinal permeability did not differ according to BMI. Colonic permeability increased with BMI, waist, neck, and hip circumferences and was significantly higher in obese than in lean subjects. As determined by logistic regression, the odds ratio (OR) of BMI increment was significantly higher in subjects in the highest tertile of sucralose excretion, also after adjusting for age and consumption of junk food. The presence of liver steatosis was associated with increased colonic permeability. Patients with lower score of adherence to Mediterranean diet had a higher score of ‘junk food’. Intestinal permeability tended to increase in subjects with a lower adherence to Mediterranean diet. In conclusion, colonic (but not stomach and small intestinal) permeability seems to be linked to obesity and liver steatosis independently from dietary habits, age, and physical activity. The exact role of these last factors, however, requires specific studies focusing on intestinal permeability. Results should pave the way to both primary prevention measures and new therapeutic strategies in metabolic and liver diseases.
Background The frequency of childhood obesity has increased over the last 3 decades, and the trend constitutes a worrisome epidemic worldwide. With the raising obesity risk, key aspects to consider are accurate body mass index classification, as well as metabolic and cardiovascular, and hepatic consequences. Data sources The authors performed a systematic literature search in PubMed and EMBASE, using selected key words (obesity, childhood, cardiovascular, liver health). In particular, they focused their search on papers evaluating the impact of obesity on cardiovascular and liver health. Results We evaluated the current literature dealing with the impact of excessive body fat accumulation in childhood and across adulthood, as a predisposing factor to cardiovascular and hepatic alterations. We also evaluated the impact of physical and dietary behaviors starting from childhood on cardio-metabolic consequences. Conclusions The epidemic of obesity and obesity-related comorbidities worldwide raises concerns about the impact of early abnormalities during childhood and adolescence. Two key abnormalities in this context include cardiovascular diseases, and nonalcoholic fatty liver disease. Appropriate metabolic screenings and associated comorbidities should start as early as possible in obese children and adolescents. Nevertheless, improving dietary intake and increasing physical activity performance are to date the best therapeutic tools in children to weaken the onset of obesity, cardiovascular diseases, and diabetes risk during adulthood.
The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of β-oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. “Dynamic” liver function tests include the breath test (BT) based on the use of substrates marked with the non-radioactive, naturally occurring stable isotope 13C. Hepatocellular metabolization of the substrate will generate 13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria. 13C-BTs explore distinct chronic liver diseases including simple liver steatosis, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD, 13C-BT use substrates such as α-ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease. 13C-BTs represent an indirect, cost-effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of 13C-BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.