In recent years, there has been an upsurge in a new form of entertainment medium called memes. These memes although seemingly innocuous have transcended the boundary of online harassment against women and created an unwanted bias against them. To help alleviate this problem, we propose an early fusion model for the prediction and identification of misogynistic memes and their type in this paper for which we participated in SemEval-2022 Task 5. The model receives as input meme image with its text transcription with a target vector. Given that a key challenge with this task is the combination of different modalities to predict misogyny, our model relies on pre-trained contextual representations from different stateof-the-art transformer-based language models and pre-trained image pre-trained models to get an effective image representation. Our model achieved competitive results on both SubTask-A and SubTask-B with the other competing teams and significantly outperforms the baselines.
In recent years , there has been an upsurge in a new form of entertainment medium called memes. These memes although seemingly innocuous have transcended onto the boundary of online harassment against women and created an unwanted bias against them . To help alleviate this problem , we propose an early fusion model for prediction and identification of misogynistic memes and its type in this paper for which we participated in SemEval-2022 Task 5 . The model receives as input meme image with its text transcription with a target vector. Given that a key challenge with this task is the combination of different modalities to predict misogyny, our model relies on pretrained contextual representations from different stateof-the-art transformer-based language models and pretrained image pretrained models to get an effective image representation .Our model achieved competitive results on both SubTask-A and SubTask-B with the other competition teams and significantly outperforms the baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.