Unilamellar liposomes composed of natural phospholipids provide a new promising class of protective agents for hypothermic storage, cryopreservation, or freeze-drying of red blood cells (RBCs). In this study, FTIR spectroscopy, MALDI-TOF MS, and colorimetric assays were used to investigate the effects of liposomes composed of a homologous series of linear saturated phosphatidylcholine phospholipids (18:0; 16:0; 14:0; 12:0) on RBC membranes. RBCs were incubated with liposomes at 37°C and both the liposomal and the RBC fraction were analyzed after incubation. FTIR studies showed that liposomes composed of short acyl chain length lipids cause an increase in RBC membrane conformational disorder at suprazero temperatures, whereas long acyl chain length lipids were found to have little effects. The increased lipid conformational disorder in the RBC membranes coincided with a decrease in the cholesterol-to-phospholipid ratio. The opposite effects were found in the liposomes after incubation with RBCs. MALDI-TOF MS analysis showed the presence of short acyl chain length lipids (14:0 and 12:0) in RBC membranes after incubation, which was not observed after incubation with liposomes containing long acyl chain length lipids (18:0 and 16:0). Liposomes alter RBC membrane properties by cholesterol depletion and lipid addition.
In recent years, linear data transformation has become an accepted method to simplify the analysis of red blood cell (RBC) deformability curves obtained by ektacytometry. In this study, we introduce the Eadie-Hofstee transformation as an alternative linearization method for the analysis of RBC deformability. RBCs were treated with hydrogen peroxide (H 2 O 2 ), tert-butyl-hydroperoxide (t-BuOOH), or methyl -cyclodextrin (MCD) and analyzed via ektacytometry (LORCA). RBC hemopathological clinical isolates (hereditary spherocytosis and ␣-thalassemia) were also analyzed by LORCA. Following ektacytometry, Eadie-Hofstee linearization was performed to obtain the maximum deformability (EI max ) and shear stress at half maximal deformation (K EI ) parameters. Significant changes in deformability parameters were observed with all agents tested. For H 2 O 2 and t-BuOOH, the K EI values increased significantly accompanied by marginal changes in EI max , while treatment with MCD resulted in a dose dependant decrease in EI max . Contrasting deformability profiles were also observed in the two hematological disorders tested. In this study we have demonstrated the ability of Eadie-Hofstee linearization to detect and resolve changes in RBC deformability induced in vitro as well as deformability changes associated with in vivo hematological disorders. This technique shows promise in basic research, blood bank and clinical hematology settings.
Recent studies have demonstrated that liposome treatment of red blood cells (RBCs) leads to improved recovery and membrane integrity following cryopreservation protocols. However, the effect of liposome treatment on hypothermically stored RBCs has not been previously investigated. The current study has investigated whether liposome treatment could modify the membrane quality and deformability of hypothermically stored RBCs. Unilamellar liposomes were synthesized using an extrusion protocol. Three lipid bilayer compositions were investigated: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC):PE:PS (8:1:1); 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC):PE:PS (8:1:1); and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC):PE:PS (8:1:1). RBCs were treated with liposomes and subsequently stored for 42 days in HEPES-NaCl buffer and saline-adenine-glucose-mannitol. RBC quality was assessed by percent hemolysis, mean corpuscular volume (MCV), and RBC deformability (ektacytometry). DOPC and DMPC liposome treatment resulted in destabilization of the RBC membrane. Percent hemolysis values for DMPC-treated RBCs were higher than untreated controls throughout storage (P<0.05). DOPC-treated RBCs showed elevated levels of hemolysis compared to controls from day 21 of storage onward (P<0.05). In addition, DOPC and DMPC-treated RBCs were less deformable than untreated controls from days 21(P=0.02) and 14 (P<0.001) of storage onward respectively. [We suggest that these changes in RBC hemolysis and deformability are due to cholesterol extraction from the RBC membrane into the liposome fraction.] In contrast, DPPC-treated RBCs maintained hemolysis, MCV, and deformability values comparable to untreated controls. Future research addressing the optimal liposome composition for stabilizing the RBC membrane at cold temperatures could lead to effective strategies to combat the RBC membrane hypothermic storage lesion and ultimately improve the quality of hypothermically preserved blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.