The purple nonsulfur bacterium Rhodospirillum rubrum has been employed to study physiological adaptation to limiting oxygen tensions (microaerophilic conditions). R. rubrum produces maximal levels of photosynthetic membranes when grown with both succinate and fructose as carbon sources under microaerophilic conditions in comparison to the level (only about 20% of the maximum) seen in the absence of fructose. Employing a unique partial O 2 pressure (pO 2 ) control strategy to reliably adjust the oxygen tension to values below 0.5%, we have used bioreactor cultures to investigate the metabolic rationale for this effect. A metabolic profile of the central carbon metabolism of these cultures was obtained by determination of key enzyme activities under microaerophilic as well as aerobic and anaerobic phototrophic conditions. Under aerobic conditions succinate and fructose were consumed simultaneously, whereas oxygen-limiting conditions provoked the preferential breakdown of fructose. Fructose was utilized via the Embden-Meyerhof-Parnas pathway. High levels of pyrophosphate-dependent phosphofructokinase activity were found to be specific for oxygen-limited cultures. No glucose-6-phosphate dehydrogenase activity was detected under any conditions. We demonstrate that NADPH is supplied mainly by the pyridine-nucleotide transhydrogenase under oxygen-limiting conditions. The tricarboxylic acid cycle enzymes are present at significant levels during microaerophilic growth, albeit at lower levels than those seen under fully aerobic growth conditions. Levels of the reductive tricarboxylic acid cycle marker enzyme fumarate reductase were also high under microaerophilic conditions. We propose a model by which the primary "switching" of oxidative and reductive metabolism is performed at the level of the tricarboxylic acid cycle and suggest how this might affect redox signaling and gene expression in R. rubrum.
Purple non-sulfur bacteria (Rhodospirillaceae) have been extensively employed for studying principles of photosynthetic and respiratory electron transport phosphorylation and for investigating the regulation of gene expression in response to redox signals. Here, we use mathematical modeling to evaluate the steady-state behavior of the electron transport chain (ETC) in these bacteria under different environmental conditions. Elementary-modes analysis of a stoichiometric ETC model reveals nine operational modes. Most of them represent well-known functional states, however, two modes constitute reverse electron flow under respiratory conditions, which has been barely considered so far. We further present and analyze a kinetic model of the ETC in which rate laws of electron transfer steps are based on redox potential differences. Our model reproduces wellknown phenomena of respiratory and photosynthetic operation of the ETC and also provides nonintuitive predictions. As one key result, model simulations demonstrate a stronger reduction of ubiquinone when switching from high-light to low-light conditions. This result is parameter insensitive and supports the hypothesis that the redox state of ubiquinone is a suitable signal for controlling photosynthetic gene expression.
BackgroundPurple nonsulfur bacteria (PNSB) are facultative photosynthetic bacteria and exhibit an extremely versatile metabolism. A central focus of research on PNSB dealt with the elucidation of mechanisms by which they manage to balance cellular redox under diverse conditions, in particular under photoheterotrophic growth.ResultsGiven the complexity of the central metabolism of PNSB, metabolic modeling becomes crucial for an integrated analysis of the accumulated biological knowledge. We reconstructed a stoichiometric model capturing the central metabolism of three important representatives of PNSB (Rhodospirillum rubrum, Rhodobacter sphaeroides and Rhodopseudomonas palustris). Using flux variability analysis, the model reveals key metabolic constraints related to redox homeostasis in these bacteria. With the help of the model we can (i) give quantitative explanations for non-intuitive, partially species-specific phenomena of photoheterotrophic growth of PNSB, (ii) reproduce various quantitative experimental data, and (iii) formulate several new hypotheses. For example, model analysis of photoheterotrophic growth reveals that - despite a large number of utilizable catabolic pathways - substrate-specific biomass and CO2 yields are fixed constraints, irrespective of the assumption of optimal growth. Furthermore, our model explains quantitatively why a CO2 fixing pathway such as the Calvin cycle is required by PNSB for many substrates (even if CO2 is released). We also analyze the role of other pathways potentially involved in redox metabolism and how they affect quantitatively the required capacity of the Calvin cycle. Our model also enables us to discriminate between different acetate assimilation pathways that were proposed recently for R. sphaeroides and R. rubrum, both lacking the isocitrate lyase. Finally, we demonstrate the value of the metabolic model also for potential biotechnological applications: we examine the theoretical capabilities of PNSB for photoheterotrophic hydrogen production and identify suitable genetic interventions to increase the hydrogen yield.ConclusionsTaken together, the metabolic model (i) explains various redox-related phenomena of the versatile metabolism of PNSB, (ii) delivers new hypotheses on the operation and relevance of several metabolic pathways, and (iii) holds significant potential as a tool for rational metabolic engineering of PNSB in biotechnological applications.
bThe biosynthesis of the major carotenoid spirilloxanthin by the purple nonsulfur bacterium Rhodospirillum rubrum is thought to occur via a linear pathway proceeding through phytoene and, later, lycopene as intermediates. This assumption is based solely on early chemical evidence (B. H. Davies, Biochem. J. 116:93-99, 1970). In most purple bacteria, the desaturation of phytoene, catalyzed by the enzyme phytoene desaturase (CrtI), leads to neurosporene, involving only three dehydrogenation steps and not four as in the case of lycopene. We show here that the chromosomal insertion of a kanamycin resistance cassette into the crtCcrtD region of the partial carotenoid gene cluster, whose gene products are responsible for the downstream processing of lycopene, leads to the accumulation of the latter as the major carotenoid. We provide spectroscopic and biochemical evidence that in vivo, lycopene is incorporated into the light-harvesting complex 1 as efficiently as the methoxylated carotenoids spirilloxanthin (in the wild type) and 3,4,3=,4=-tetrahydrospirilloxanthin (in a crtD mutant), both under semiaerobic, chemoheterotrophic, and photosynthetic, anaerobic conditions. Quantitative growth experiments conducted in dark, semiaerobic conditions, using a growth medium for high cell density and high intracellular membrane levels, which are suitable for the conventional industrial production in the absence of light, yielded lycopene at up to 2 mg/g (dry weight) of cells or up to 15 mg/liter of culture. These values are comparable to those of many previously described Escherichia coli strains engineered for lycopene production. This study provides the first genetic proof that the R. rubrum CrtI produces lycopene exclusively as an end product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.