The Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), and the Humidity Sounder for Brazil (HSB) form an integrated cross-track scanning temperature and humidity sounding system on the Aqua satellite of the Earth Observing System (EOS). AIRS is an infrared spectrometer/radiometer that covers the 3.7-15.4-m spectral range with 2378 spectral channels. AMSU is a 15-channel microwave radiometer operating between 23 and 89 GHz. HSB is a four-channel microwave radiometer that makes measurements between 150 and 190 GHz. In addition to supporting the National Aeronautics and Space Administration's interest in process study and climate research, AIRS is the first hyperspectral infrared radiometer designed to support the operational requirements for medium-range weather forecasting of the National Ocean and Atmospheric Administration's National Centers for Environmental Prediction (NCEP) and other numerical weather forecasting centers. AIRS, together with the AMSU and HSB microwave radiometers, will achieve global retrieval accuracy of better than 1 K in the lower troposphere under clear and partly cloudy conditions. This paper presents an overview of the science objectives, AIRS/AMSU/HSB data products, retrieval algorithms, and the ground-data processing concepts. The EOS Aqua was launched on May 4, 2002 from Vandenberg AFB, CA, into a 705-km-high, sun-synchronous orbit. Based on the excellent radiometric and spectral performance demonstrated by AIRS during prelaunch testing, which has by now been verified during on-orbit testing, we expect the assimilation of AIRS data into the numerical weather forecast to result in significant forecast range and reliability improvements.
The Atmospheric Infrared Sounder (AIRS), the hyperspectral infrared sounder on the NASA Aqua mission, both improves operational weather prediction and provides high-quality research data for climate studies. The Atmospheric Infrared Sounder (AIRS), and its two companion microwave instruments, the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), form the integrated atmospheric sounding system flying on the Earth Observing System (EOS) Aqua spacecraft since its launch in May 2002.1 The primary scientific achievement of AIRS has been to improve weather prediction (Le Marshall et al. 2005a,b,c) and to study the water and energy cycle (Tian et al. 2006). AIRS also provides information on several greenhouse gases. The measurement goal of AIRS is the retrieval of temperature and precipitable-water vapor profiles with accuracies approaching those of conventional radiosondes. In the following text we use the terms AIRS and AIRS-AMSU-HSB interchangeably.1 The HSB ceased functioning after 5 February 2003. This did not have an impact on the accuracy, coverage, or resolution of the AIRS core data product, but its loss has had a significant impact on AIRS research products.A comprehensive set of articles on AIRS and AMSU design details, prelaunch calibration, and prelaunch retrieval performance expectations were published in a special issue of IEEE Transactions on Geoscience and Remote Sensing (2003, vol. 41, no. 2). This paper discusses the performance of AIRS and examines how it is meeting its operational and research objectives based on the experience of more than 2 yr with AIRS data. We describe the science background and the performance of AIRS in terms of the accuracy and stability of its observed spectral radiances. We examine the validation of the retrieved temperature and water vapor profiles against collocated operational radiosondes, and then we assess the impact thereof on numerical weather forecasting of the assimilation of the AIRS spectra and the retrieved temperature. We close the paper with a discussion on the retrieval of several minor tropospheric constituents from AIRS spectra.
A systematic search of the IRAS point-source catalog has identified eight new nearby stars which are "Vega-like" in terms of their large 60-micron excess. This brings to twelve, of the set of 36 nearby dwarfs and subgiants which are bright enough to have IRAS catalog fluxes at 12, 25, and 60 microns, the total number of known Vega-like stars within 25 parsecs of the sun. Two significant effects distinguish these twelve stars from the 24 stars without 60-micron excess: The predominance of spectral type A and the absence of double stars in the Vega-like group. While both effects are intuitively consistent with the interpretation that the 60-micron excess radiation is due to a disk of protoplanetary material, suggesting an early phase in the evolution of a planetary system, this distribution can also be due to luminosity and brightness selection effects. A large fraction of the F, G, and K main-sequence stars, i.e., stars with longer main-sequence lifetimes than A stars, may thus also be surrounded by disks, but only the warmest of these disks are identifiable with high confidence in the 7RAS catalog by their 60-micron excesses.
A total of 86 galaxies have been detected at 60 µm in the high galactic latitude portion of the IRAS minisurvey. The surface density of detected galaxies with flux densities greater than 0.5 Jy is 0.25 deg-2 • Virtually all the galaxies detected are spiral galaxies and have an infrared to blue luminosity ratio ranging from 50 to 0.5. For the infrared-selected sample, no obvious correlation exists between infrared excess and color temperature. The infrared flux from 10 to 100 µm contributes approximately 5% of the blue luminosity for galaxies in the magnitude range 14 < mpg< 18 mag. The fraction of interacting galaxies is between one-eighth and one-fourth of the sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.