Abstract-An ant colony optimization (ACO) approach for the resource-constrained project scheduling problem (RCPSP) is presented. Several new features that are interesting for ACO in general are proposed and evaluated. In particular, the use of a combination of two pheromone evaluation methods by the ants to find new solutions, a change of the influence of the heuristic on the decisions of the ants during the run of the algorithm, and the option that an elitist ant forgets the best-found solution are studied. We tested the ACO algorithm on a set of large benchmark problems from the Project Scheduling Library. Compared to several other heuristics for the RCPSP, including genetic algorithms, simulated annealing, tabu search, and different sampling methods our algorithm performed best on average. For nearly one-third of all benchmark problems, which were not known to be solved optimally before, the algorithm was able to find new best solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.