Background: Matrix metalloproteinases (MMPs) are involved in the remodelling and degradation of extracellular matrix and may play a role in pulmonary tissue destruction in cystic fibrosis (CF). Methods: Bronchoalveolar lavage (BAL) fluid levels of MMP-8, MMP-9, and their natural inhibitor TIMP-1 were measured on two occasions within 18 months in 23 children with mild CF, 13 of whom were treated with DNase. Results: MMP-8 (39.3 (6.8) v 0.12 (0.01) ng/ml), MMP-9 (58.0 (11.4) v 0.5 (0.02) ng/ml), and the molar ratio of MMP-9/TIMP-1 (0.36 (0.05) v 0.048 (0.01)) were significantly higher in patients with CF than in control children without lung disease. Gelatine zymography showed the typical banding pattern of neutrophil derived MMP-9, including 130 kDa NGAL-MMP-9 complex and 92 kDa latent MMP-9 bands; 85 kDa bands (corresponding to active MMP-9) were seen in all patients. There was a close correlation between BAL fluid concentrations of MMPs and α 2 -macroglobulin, a marker of alveolocapillary leakage. After 18 months MMP levels were increased in untreated patients and decreased in patients treated with DNase. Conclusions: Uninhibited MMPs may contribute to pulmonary tissue destruction even in CF patients with mild lung disease that may be positively affected by treatment with DNase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.