The finding of orexin/hypocretin deficiency in narcolepsy patients suggests that this hypothalamic neuropeptide plays a crucial role in regulating sleep/wakefulness states. However, very little is known about the synaptic input of orexin/hypocretin-producing neurons (orexin neurons). We applied a transgenic method to map upstream neuronal populations that have synaptic connections to orexin neurons and revealed that orexin neurons receive input from several brain areas. These include the amygdala, basal forebrain cholinergic neurons, GABAergic neurons in the preoptic area, and serotonergic neurons in the median/paramedian raphe nuclei. Monoamine-containing groups that are innervated by orexin neurons do not receive reciprocal connections, while cholinergic neurons in the basal forebrain have reciprocal connections, which might be important for consolidating wakefulness. Electrophysiological study showed that carbachol excites almost one-third of orexin neurons and inhibits a small population of orexin neurons. These neuroanatomical findings provide important insights into the neural pathways that regulate sleep/wakefulness states.
Hypothalamic neurons containing orexin (hypocretin) are activated during motivated behaviors and active waking. We show that injection of orexin-A into the ventromedial hypothalamus (VMH) of mice or rats increased glucose uptake and promoted insulin-induced glucose uptake and glycogen synthesis in skeletal muscle, but not in white adipose tissue, by activating the sympathetic nervous system. These effects of orexin were blunted in mice lacking beta-adrenergic receptors but were restored by forced expression of the beta(2)-adrenergic receptor in both myocytes and nonmyocyte cells of skeletal muscle. Orexin neurons are activated by conditioned sweet tasting and directly excite VMH neurons, thereby increasing muscle glucose metabolism and its insulin sensitivity. Orexin and its receptor in VMH thus play a key role in the regulation of muscle glucose metabolism associated with highly motivated behavior by activating muscle sympathetic nerves and beta(2)-adrenergic signaling.
Ghrelin, a gastrointestinal peptide, stimulates feeding when administered peripherally. Blockade of the vagal afferent pathway abolishes ghrelin-induced feeding, indicating that the vagal afferent pathway may be a route conveying orexigenic ghrelin signals to the brain. Here, we demonstrate that peripheral ghrelin signaling, which travels to the nucleus tractus solitarius (NTS) at least in part via the vagus nerve, increases noradrenaline (NA) in the arcuate nucleus of the hypothalamus, thereby stimulating feeding at least partially through alpha-1 and beta-2 noradrenergic receptors. In addition, bilateral midbrain transections rostral to the NTS, or toxin-induced loss of neurons in the hindbrain that express dopamine beta hydroxylase (an NA synthetic enzyme), abolished ghrelin-induced feeding. These findings provide new evidence that the noradrenergic system is necessary in the central control of feeding behavior by peripherally administered ghrelin.
In this paper, there was an error in the description of the fusion protein used in the transgenic construct. We described the construct as TTC::GFP in the text and in Figure 1A. The order of the components of the fusion protein was wrong. The fusion protein used in this study should be described as GFP::TTC (the tetanus toxin C-terminal fragment is fused to the C terminus of GFP). Although this correction does not affect the data or the conclusions of the paper, the authors would like to apologize to readers who have been misled by these mistakes. The authors also wish to correct the affiliations of Natsuko Tsujino and Yoshimasa Koyama as listed above.
Recent advances in peptidomics have enabled the identification of previously uncharacterized peptides. However, sequence information alone does not allow us to identify candidates for bioactive peptides. To increase an opportunity to discover bioactive peptides, we have focused on C-terminal amidation, a post-translational modification shared by many bioactive peptides. We analyzed peptides secreted from human medullary thyroid carcinoma TT cells that produce amidated peptides, and we identified two novel amidated peptides, designated neuroendocrine regulatory peptide (NERP)-1 and NERP-2. NERPs are derived from distinct regions of the neurosecretory protein that was originally identified as a product of a nerve growth factorresponsive gene in PC12 cells. Mass spectrometric analysis of the immunoprecipitate using specific antibodies as well as reversed phase-high performance liquid chromatography coupled with radioimmunoassay analysis of brain extract demonstrated the endogenous presence of NERP-1 and NERP-2 in the rat. NERPs are abundant in the paraventricular and supraoptic nuclei of the rat hypothalamus and colocalized frequently with vasopressin but rarely with oxytocin. NERPs dose-dependently suppressed vasopressin release induced by intracerebroventricular injection of hypertonic NaCl or angiotensin II in vivo. NERPs also suppressed basal and angiotensin II-induced vasopressin secretion from hypothalamic explants in vitro. Bioactivity of NERPs required C-terminal amidation. Anti-NERP IgGs canceled plasma vasopressin reduction in response to water loading, indicating that NERPs could be potent endogenous suppressors of vasopressin release. These findings suggest that NERPs are novel modulators in body fluid homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.