We determined rbcL sequences of tl of 15 extant species of Osmundaceae which represent all three genera, Osmunda, Todea and Leptopterk Our phylogenetic analysis concluded: 1) Osmunda subg. Osmunda and subg. Pknasium are monophyletic groups, but subg. Osmundastrum is not. The genus Osmunda is not monophyletic because T W and Leptopteris are positioned within Osmunda. 2) Osmunda cinnamomea is the most basally positioned species in Osmundaceae, and it can be called as "a living fossil" because a fossil species (0. c/aytoniites) with almost the same morphology as this species was recorded from the Triassic. 3) Osmunda jbpor~ica and 0. regals are very closely related with only one nucleotii difference in the rbcL gene. 4) Greater nucleotide variation (5-7 nucleotides) was found between conspecific samples of 0. cinnamomea and 0. c/aytonbna collected from Japan and United States. Each of these two species may comprise more than two biologically differentiated species.
This study describes Homevaleia gouldii H. Nishida, Pigg, Kudo et Rigby gen. et sp. nov., an ovule-bearing glossopterid organ, based on a combination of recently collected permineralized specimens from the Late Permian Homevale Station locality in the Bowen Basin of Queensland, Australia, and on previously studied material from the 1977 Gould and Delevoryas study. Homevaleia, which resembles the compression-impression genus Dictyopteridium, is an inrolled megasporophyll with a distinct keel that bears numerous (over 70) stalked ovules on its adaxial surface. Ovules are small, oval, with an elaborate mesh-like structure that is developed from the outermost integumentary layers. Specimens interpreted as representing different developmental stages show there is an apparent interrelationship between megagametophyte development and the opening of the surrounding fertile structure for pollination. Together, new information provided by this material enables better understanding of glossopterid reproductive structure and its function in one distinctive form.
Aim We used fossil and phylogenetic evidence to reconstruct climatic niche evolution in Nothofagus, a Gondwana genus distributed in tropical and temperate latitudes. To assess whether the modern distribution of the genus can be explained by the tropical conservatism hypothesis, we tested three predictions: (1) species from all Nothofagus subgenera coexisted under mesothermal climates during the early Eocene; (2) tolerance to microthermal climates evolved during the Eocene-Oligocene cooling from an ancestor that grew under mesothermal conditions; and (3) the climatic niche in Nothofagus is phylogenetically conserved.Location Australia, New Zealand, New Caledonia, Papua-New Guinea and South America.Methods We estimated the palaeoclimate of the Early Eocene, fossil-bearing Ligorio Marquez Formation (LMF, Chile), using coexistence and leaf physiognomic analysis. We reconstructed ancestral climatic niches of Nothofagus using extant species distributions and a time-calibrated phylogeny. Finally, we used the morphological disparity index and phylogenetic generalized least squares to assess whether climatic variables follow a Brownian motion (BM) or an Ornstein-Uhlenbeck (OU) model of evolution.Results Our palaeoclimatic estimates suggest mesothermal conditions for the LMF, where macrofossils associated with subgenera Lophozonia and possibly Fuscospora, and fossil pollen of Brassospora and Fuscospora/Nothofagus were recorded. These results are not supported by our phylogenetic analysis, which instead suggests that the ancestor of Nothofagus lived under microthermal to marginally mesothermal conditions, with tolerance to mesothermal conditions evolving only in the subgenus Brassospora. Precipitation and temperature dimensions of the realized climatic niche fit with a gradual BM or constrained OU model of evolution. Main ConclusionsOur results suggest that the use of phylogenetic reconstruction methods based only on present distributions of extant taxa to infer ancestral climatic niches is likely to lead to erroneous results when climatic requirements of ancestors differ from their extant descendants, or when much extinction has occurred.
Araucarioxylon Kraus is a widely known fossil-genus generally applied to woods similar to that of the extant Araucariaceae. However, since 1905, several researchers have pointed out that this name is an illegitimate junior nomenclatural synonym. At least four generic names are in current use for fossil wood of this type: Agathoxylon Hartig, Araucarioxylon, Dadoxylon Endl. and Dammaroxylon J.Schultze-Motel. This problem of inconsistent nomenclatural application is compounded by the fact that woods of this type represent a wide range of plants including basal pteridosperms, cordaitaleans, glossopterids, primitive conifers, and araucarian conifers, with a fossil record that extends from the Devonian to Holocene. Conservation of Araucarioxylon has been repeatedly suggested but never officially proposed. Since general use is a strong argument for conservation, a poll was conducted amongst fossil wood anatomists in order to canvass current and preferred usage. It was found that the community is divided, with about one-fifth recommending retention of the well-known Araucarioxylon, whereas the majority of others advocated use of the legitimate Agathoxylon. The arguments of the various colleagues who answered the poll are synthesized and discussed. There is clearly little support for conservation of Araucarioxylon. A secondary aspect of the poll tackled the issue as to whether Araucaria-like fossil woods should be either gathered into a unique fossil-genus, or whether two fossil-genera should be recognized, based on the respective presence or absence of axial parenchyma. A majority of colleagues favoured having one fossil-genus only. Agathoxylon can be used legitimately and appears to be the most appropriate name for such woods. However, its original diagnosis must be expanded if those woods lacking axial parenchyma are to be included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.