Micro gas turbines (MGTs) are subject to certain problems, notably low thermal efficiency of the system and high emission including NOx. The chemically recuperated gas turbine (CRGT) system introduced in this paper is one of the most promising solutions to these problems. The CRGT system we propose uses an endothermic reaction of methane steam reforming for heat recovery. It is usually thought that the reaction of methane steam reforming does not occur sufficiently to recover heat at the temperature of turbine exhaust, but we confirmed sufficient reaction occurred at such low temperature and that applications of the chemical recuperation system to some commercial MGTs are effective for increasing the efficiency.
Compressor fouling is generally accepted to be an important factor when monitoring the efficiency of an engine’s operation. However, there are not many studies related to the local fouling behavior of the individual components of the compressor. In the present paper, the CFD-ACE software package is used for the flow field calculation and the results are utilized to calculate the deposition rates on the blade surfaces of a conventional compressor stator and rotor. The deposition model takes into account the particle and surface material properties and the energy balance at the point of impact. A discussion is presented regarding the various mechanisms that produce the final deposition rate distribution and how the flow field and blade geometry affect it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.