Sintered tungsten carbide which has high hardness and high heat resistance, has been widely used in molds and dies. Research on the development of a cutting technology for sintered tungsten carbide (sintered WC-Co alloy) has been pursued mainly with the use of a turning process. We focused on building an efficient milling method for sintered tungsten carbide by using diamond-coated ball end tools, and have investigated their basic properties under specific cutting conditions. This study extends our previous work by enhancing cutting distance in the milling of sintered tungsten carbide, especially that with a “fine” WC grain. The surface roughness of cut workpieces is evaluated from the point of view of the quality of surface roughness. A series of cutting experiments under different cutting conditions were carried out, and the possibility of deriving a suitable cutting condition for the ball end milling of sintered tungsten carbide is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.