A large increase in oscillation frequency was achieved in resonant-tunneling-diode (RTD) terahertz oscillators by reducing the conduction loss. An n+-InGaAs layer under the air-bridge electrode connected to the RTD was observed to cause a large conduction loss for high-frequency current due to the skin effect. By introducing a new fabrication process removing the InGaAs layer, we obtained 1.92-THz oscillation, which extended the highest frequency of room-temperature electronic single oscillators. Theoretical calculations reasonably agreed with the experiment, and an oscillation above 2 THz is further expected with an improved structure of the slot antenna used as a resonator and radiator.
We report the dependence of oscillation frequency on the well and barrier thicknesses in a resonant tunneling diode (RTD) terahertz oscillator integrated with a planar slot antenna. The oscillation frequency increased with decreasing well and barrier thicknesses because of the reduction in dwell time in the resonance region. Room-temperature fundamental oscillation of up to 1.31 THz with an output power of about 10 µW was achieved in the RTD with a 3.9-nm-thick well and 1.0-nm-thick barriers.
In search for possibilities to increase the operating frequencies of resonant-tunneling diodes (RTDs), we are studying RTDs working in an unusual regime. The collector side of our diodes is so heavily doped that the collector depletion region is fully eliminated in our RTDs and the ground quantum-well subband stays immersed under (or stays close to) the collector quasi-Fermi level. The electron injection from the collector into the RTD quantum well is very strong in our diodes and stays comparable to that from the emitter in the whole range of RTD operating biases. Our RTDs exhibit well pronounced negative-differential-conductance region and peak-to-valley current ratio around 1.8. We demonstrate operation of our diodes in RTD oscillators up to 1.46 THz. We also observe a fine structure in the emission spectra of our RTD oscillators, when they are working in the regime close to the onset of oscillations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.