Nonclassical pyramidanes with their inverted tetrahedral configuration of the apical atom are among the most challenging synthetic targets in cluster chemistry. In this Communication, we report on the synthesis and structure of the first representative of pyramidal compounds with the group 13 element at the apex, namely, chloroborapyramidane 2. Reduction of 2 with excess of lithium metal unexpectedly produced the cage-opening product, borole dianion derivative {3·[Li(thf)]}, a 6π-electron aromatic system.
Pyramidane and its derivatives are among the most desirable synthetic chemistry targets, whose appealing square-pyramidal design, fascinating nonclassical structure, and unusual bonding features have attracted the permanently growing interest of organic chemists for decades. Although they have been comprehensively approached on theoretical grounds, no member of the pyramidane family was experimentally realized until very recently, thus remaining one of the biggest synthetic challenges for experimental pursuits. In this paper, we report on a series of stable hybrid pyramidanes of group 14 elements, featuring germanium, tin, or lead at the apex of the square pyramid, capping the four-membered-ring base made of carbon, silicon, or germanium atoms. On the basis of the experimental results (X-ray diffraction and NMR and Mossbauer spectroscopy) and computational studies at the B3LYP/Def2TZVP level of theory (MO, NBO, NRT, and AIM), an extraordinarily high degree of ionicity of the pyramidal apex-to-base bonds was attributed to the overall structure of these nonclassical covalent compounds.
Pyramidanes C[C R ] constitute a novel class of highly strained and reactive polyhedral clusters that attracted a great deal of attention of both theoreticians and experimentalists. Although well-studied from the theoretical viewpoint, pyramidanes were synthetically inaccessible, and only very recently their very first isolable representatives have been described. In this Communication, we report on the synthesis and structural studies of the cationic pyramidane with the Group 15 element at the apex, namely, phosphapyramidane, an isoelectronic analogue of the neutral pyramidanes of the Group 14 elements.
A representative of the stable alumoles
with a chlorine substituent
at the aluminum atom was synthesized by the coupling of a cyclobutadiene
dianion derivative and aluminum trichloride. The structure of alumole
was established by X-ray crystallography, which showed that alumole
exists as a monomer. The aluminum atom is tetracoordinated with the
fourth coordination site occupied by a thf molecule, which reduces
the intrinsically high Lewis acidity of the aluminum center, thus
stabilizing the alumole molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.