Sterol regulatory element-binding protein (SREBP)-1c is now well established as a key transcription factor for the regulation of lipogenic enzyme genes such as FAS in hepatocytes. Meanwhile, the mechanisms of lipogenic gene regulation in adipocytes remain unclear. Here, we demonstrate that those in adipocytes are independent of SREBP-1c. In adipocytes, unlike in hepatocytes, the stimulation of SREBP-1c expression by liver X receptor agonist does not accompany lipogenic gene upregulation, although nuclear SREBP-1c protein is concomitantly increased, indicating that the activation process of SREBP-1c by the cleavage system is intact in adipocytes. Supportively, transcriptional activity of the mature form of SREBP-1c for the FAS promoter was negligible when measured by reporter analysis. As an underlying mechanism, accessibility of SREBP-1c to the functional elements was involved, because chromatin immunoprecipitation assays revealed that SREBP-1c does not bind to the functional SRE/E-box site on the FAS promoter in adipocytes. Moreover, genetic disruption of SREBP-1 did not cause any changes in lipogenic gene expression in adipose tissue. In summary, in adipocytes, unlike in hepatocytes, increments in nuclear SREBP-1c are not accompanied by transactivation of lipogenic genes; thus, SREBP-1c is not committed to the regulation of lipo-
Mitotic catastrophe, a form of cell death that occurs during mitosis and after mitotic slippage to a tetraploid state, plays important roles in the efficacy of cancer cell killing by microtubule inhibitors (MTIs). Prolonged mitotic arrest by the spindle assembly checkpoint is a well-known requirement for mitotic catastrophe, and thus for conferring sensitivity to MTIs. We previously reported that turning off spindle assembly checkpoint activation after a defined period of time is another requirement for efficient postslippage death from a tetraploid state, and we identified SIRT2, a member of the sirtuin protein family, as a regulator of this process. Here, we investigated whether SIRT2 regulates basal autophagy and whether, in that case, autophagy regulation by SIRT2 is required for postslippage death, by analogy with previous insights into SIRT1 functions in autophagy. We show, by combined knockdown of autophagy genes and SIRT2, that SIRT2 serves this function at least partially by suppressing basal autophagy levels. Notably, increased autophagy induced by rapamycin and mild starvation caused mitotic arrest for an abnormally long period of time in the presence of MTIs, and this was followed by delayed postslippage death, which was also observed in cells with SIRT2 knockdown. These results underscore a causal association among increased autophagy levels, mitotic arrest for an abnormally long period of time after exposure to MTIs, and resistance to MTIs. Although autophagy acts as a tumor suppressor mechanism, this study highlights its negative aspects, as increased autophagy may cause mitotic catastrophe malfunction. Thus, SIRT2 offers a novel target for tumor therapy.
BackgroundThe significance of a unique inhibitory Fc receptor for IgG, FcγRIIB (RIIB), in the prevention of spontaneous production of autoantibodies remains controversial, due mainly to the fact that the RIIB locus is adjacent to the autoimmune-related SLAM locus harboring the genes coding for signaling lymphocyte activation molecules, making it difficult to isolate the effect of RIIB deletion from that of SLAM in gene-targeted mice. Our objective was to determine the influence of RIIB deletion on the spontaneous development of autoimmune diseases and to compare it with that of potentially pathogenic SLAM.ResultsWe established two congenic C57BL/6 (B6) strains, one with the RIIB deletion and the other with SLAM, by backcrossing 129/SvJ-based RIIB-deficient mice into the B6 genetic background extensively. The RIIB deficiency indeed led to the production and/or accumulation of a small amount of anti-nuclear autoantibodies (ANAs) and to weak IgG immune-complex deposition in glomeruli without any obvious manifestation of lupus nephritis. In contrast, pathogenic SLAM in the B6 genetic background induced ANAs but no IgG immune-complex deposition in the kidneys. Naïve SLAM mice but not RIIB-deficient mice exhibited hyperplasia of splenic germinal centers.ConclusionThe present results clarify the roles of RIIB in preventing production and/or accumulation of a small amount of ANAs, and development of glomerulonephritis. The combined effects of RIIB deletion and pathogenic SLAM can lead to severe lupus nephritis in the B6 genetic background.Electronic supplementary materialThe online version of this article (doi:10.1186/s12865-014-0047-y) contains supplementary material, which is available to authorized users.
This study aims to investigate the effects of estradiol replacement on the orexigenic action of ghrelin in ovariectomized (OVX) obese rats fed with a high-fat diet (HFD). Four weeks after OVX at 9 weeks of age, Wistar rats were subcutaneously implanted with either 17β-estradiol (E2) or placebo (Pla) pellets and started on HFD feeding. After 4 weeks, growth hormone-releasing peptide (GHRP)-6, a growth hormone secretagogue receptor (GHSR) agonist injected intraperitoneally, induced changes in HFD intake, and c-Fos-positive neurons in the hypothalamic arcuate nucleus (ARC) were measured in both groups. The ghrelin protein and mRNA levels, as well as GHSR protein in stomach, were analyzed by Western blotting and real-time PCR. HFD increased energy intake and body weight in the Pla group, while it temporarily reduced these in the E2 group. GHRP-6 enhanced HFD intake and activated neurons in the ARC only in the Pla group. Furthermore, gastric ghrelin and GHSR protein levels were lower in the E2 group than in the Pla group, but plasma acyl ghrelin levels were similar in both groups. Our results suggest that E2 replacement improves obesity by inhibiting the orexigenic action of ghrelin via downregulation of ghrelin and its receptor in stomach in HFD-fed OVX rats.
The purpose of this study was to evaluate the utility of human adipose stem cells derived from the buccal fat pad (hBFP-ASCs) for nerve regeneration. Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive death of dopaminergic neurons. PD is a candidate disease for cell replacement therapy because it has no fundamental therapeutic methods. We examined the properties of neural-related cells induced from hBFP-ASCs as a cell source for PD treatment. hBFP-ASCs were cultured in neurogenic differentiation medium for about 2 weeks. After the morphology of hBFP-ASCs changed to neural-like cells, the medium was replaced with neural maintenance medium. Cells differentiated from hBFP-ASCs showed neuron-like structures and expressed neuron markers (β3-tubulin, neurofilament 200, and microtubule-associated protein 2), an astrocyte marker (glial fibrillary acidic protein), or dopaminergic neuron-related marker (tyrosine hydroxylase). Induced neural cells were transplanted into a 6-hydroxydopamine (6-OHDA)-lesioned rat hemi-parkinsonian model. At 4 weeks after transplantation, 6-OHDA-lesioned rats were subjected to apomorphine-induced rotation analysis. The transplanted cells survived in the brain of rats as dopaminergic neural cells. No tumor formation was found after cell transplantation. We demonstrated differentiation of hBFP-ASCs into neural cells, and that transplantation of these neural cells improved the symptoms of model rats. Our results suggest that neurons differentiated from hBFP-ASCs would be applicable to cell replacement therapy of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.