Abstract-Safety is the most important to the mobile robots that coexist with human. There are many studies that investigate obstacle detection and collision avoidance by predicting obstacles' trajectories several seconds into the future using mounted sensors such as cameras and laser range finder (LRF) for the safe behavior control of robots. In environments such as crossing roads where blind areas occur because of visual barriers like walls, obstacle detection might be delayed and collisions might be difficult to avoid. Using environmental sensors to detect obstacles is effective in such environments. When crossing roads, there are several passages pedestrian might move and it is difficult to depict going each passage in the same movement model. Therefore, we hypothesize that a more effective way to predict pedestrian movement is by predicting passages pedestrian might move and estimating the trajectories to the passages. We acquire pedestrian trajectory data using an environmental LRF with an extended Kalman filter (EKF) and construct pedestrian movement models using vector auto regressive (VAR) models, which pedestrian state is consisting of the position, speed and direction. Then, we test the validity of the constructed pedestrian movement models using experimental data. We narrow down the selection of a pedestrian movement model by comparing the prediction error for each path between the estimated pedestrian state using an EKF, and the predicted state using each movement model. We predict the trajectory using the selected movement model. Finally, we confirm that an appropriate path model that a pedestrian can actually move through is selected before the crossing area and that only the appropriate model is selected near the crossing area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.