Summary Immune complexes (ICs) are the direct and real‐time products of humoral immune responses. The identification of constituent foreign or autoantigens within ICs might bring new insights into the pathology of infectious diseases. We applied immune complexome analysis of plasma to the study of Chagas disease caused by Trypanosoma cruzi. Twenty seropositive plasma samples including cardiac and/or megacolon determinate patients (n = 11) and indeterminate (n = 9) were analysed along with 10 seronegative individuals to characterize the antigens bound to circulating ICs. We identified 39 T. cruzi antigens and 114 human autoantigens specific to patients with Chagas. Among those antigens, two T. cruzi antigens (surface protease GP63, glucose‐6‐isomerase) and six human autoantigens (CD180 antigen, ceruloplasmin, fibrinogen beta chain, fibrinogen beta chain isoform 2 preprotein, isoform gamma‐A of fibrinogen γ‐chain, serum paraoxonase) were detected in more than 50% of the patients tested. Human isoform short of complement factor H‐related protein 2 and trans‐sialidase of T. cruzi were more frequently found in the indeterminate (5/9 for both) compared with in the determinate Chagas (0/11, P = 0·046 for human, 1/11, P = 0·0498 for T. cruzi). The immune complexome could illustrate the difference of immune status between clinical forms of chronic Chagas disease.
Cancer immunotherapies such as antibodies targeting T cell checkpoints, or adaptive tumor-infiltrating lymphocyte (TIL) transfer, have been developed to boost the endogenous immune response against human malignancies. However, activation of T cells by such antibodies can lead to the risk of autoimmune diseases. Also, the selection of tumor-reactive T cells for TIL relies on information regarding mutated antigens in tumors and does not reflect other factors involved in protein antigenicity. It is therefore essential to engineer therapeutic interventions by which T cell reactivity against tumor cells is selectively enhanced (i.e., "focused cancer immunotherapy") based on tumor antigens that are specifically expressed in the tumor of a certain cancer and in many patients with this cancer. Immune complexes (ICs) are the direct and stable products of immunological recognition by humoral immunity. Here, we searched for tumor-specific IC antigens in each of five cancers (lung (n = 28), colon (n = 20), bladder (n = 20), renal cell (n = 15) and malignant lymphoma (n = 9)), by using immune complexome analysis that comprehensively identifies and profiles the constituent antigens in ICs. This analysis indicated that gelsolin and inter-alpha-trypsin inhibitor heavy chains were specifically and frequently detected (at a frequency higher than 80%), and that phosphoproteins (VENTX, VCIP135) were also specifically present in the ICs of lung cancer patients. Immune complexome analysis successfully identified several tumor-specific IC antigens with high detection frequency in lung cancer patients. These specific antigens are required to validate the clinical benefit by further analysis using a large number of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.