Wireless communications and sensing have notably advanced thanks to the recent developments in both software and hardware. Although various modulation schemes have been proposed to efficiently use the limited frequency resources by exploiting several degrees of freedom, antenna performance is essentially governed by frequency only. Here, we present an antenna design concept based on metasurfaces to manipulate antenna performances in response to the time width of electromagnetic pulses. We numerically and experimentally show that by using a proper set of spatially arranged metasurfaces loaded with lumped circuits, ordinary omnidirectional antennas can be reconfigured by the incident pulse width to exhibit directional characteristics varying over hundreds of milliseconds or billions of cycles, far beyond conventional performance. We demonstrate that the proposed concept can be applied for sensing, selective reception under simultaneous incidence and mutual communications as the first step to expand existing frequency resources based on pulse width.
Anisotropic impedance surfaces have been used to control surface wave propagation, which has benefited applications across a variety of fields including radio-frequency (RF) and optical devices, sensing, electromagnetic compatibility, wireless power transfer, and communications. However, the responses of these surfaces are fixed once they are fabricated. Although tunable impedance surfaces have been introduced by utilizing power-dependent nonlinear components, such a tuning mechanism is generally limited to specific applications. Here we propose an additional mechanism to achieve tunable anisotropic impedance surfaces by embedding transient circuits that are controllable via the type of incident waveform. By switching between the open and short states of the circuits, it is possible to separately control the unit-cell impedances in two orthogonal directions, thereby changing from an isotropic impedance surface to an anisotropic impedance surface. Our simulation results show that a short pulse strongly propagates for both x and y directions at 3 GHz. However, when the waveform changes to a continuous wave, the transmittance for x direction is reduced to 26%, although still the transmittance for y direction achieves 77%. Therefore, the proposed metasurfaces are capable of guiding a surface wave in a specific direction based on the incident waveform even with the same power level and at the same frequency. Our study paves new avenues regarding the use of surface wave control in applications ranging from wireless communications to sensing and cloaking devices.
In this study, we numerically demonstrate how the response of recently reported circuit-based metasurfaces is characterized by their circuit parameters. These metasurfaces, which include a set of four diodes as a full wave rectifier, are capable of sensing different waves even at the same frequency in response to the incident waveform, or more specifically the pulse width. This study reveals the relationship between the electromagnetic response of such waveform-selective metasurfaces and the SPICE parameters of the diodes used. First, we show that reducing a parasitic capacitive component of the diodes is important for realization of waveform-selective metasurfaces in a higher frequency regime. Second, we report that the operating power level is closely related to the saturation current and the breakdown voltage of the diodes. Moreover, the operating power range is found to be broadened by introducing an additional resistor into the inside of the diode bridge. Our study is expected to provide design guidelines for circuit-based waveform-selective metasurfaces to select/fabricate optimal diodes and enhance the waveform-selective performance at the target frequency and power level.
With their self-tuned time-varying responses, waveform-selective metasurfaces embedded with nonlinear electronics have shown fascinating applications, including distinguishing different electromagnetic waves depending on the pulse width. However, thus far they have only been realized with a spatially homogeneous scattering profile. Here, by modeling a metasurface as time-varying admittance sheets, we provide an analytical calculation method to predict the metasurface time-domain responses. This allows derivation of design specifications in the form of equivalent sheet admittance, which is useful in synthesizing a metasurface with spatiotemporal control, such as to realize a metasurface with prescribed time-dependent diffraction characteristics. As an example, based on the proposed equivalent admittance sheet modeling, we synthesize a waveform-selective Fresnel zone plate with variable focal length depending on the incoming pulse width. The proposed synthesis method of pulse-width-dependent metasurfaces may be extended to designing metasurfaces with more complex spatiotemporal wave manipulation, benefiting applications such as sensing, wireless communications and signal processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.