Nuclear volume and the number of nuclear pore complexes (NPCs) on the nucleus almost double during interphase in dividing cells. How these events are coordinated with the cell cycle is poorly understood, particularly in mammalian cells. We report here, based on newly developed techniques for visualizing NPC formation, that cyclin-dependent kinases (Cdks), especially Cdk1 and Cdk2, promote interphase NPC formation in human dividing cells. Cdks seem to drive an early step of NPC formation because Cdk inhibition suppressed generation of 'nascent pores', which we argue are immature NPCs under the formation process. Consistent with this, Cdk inhibition disturbed proper expression and localization of some nucleoporins, including Elys/Mel-28, which triggers postmitotic NPC assembly. Strikingly, Cdk suppression did not notably affect nuclear growth, suggesting that interphase NPC formation and nuclear growth have distinct regulation mechanisms.
The nuclear basket (NB) scaffold, a fibrillar structure anchored to the nuclear pore complex (NPC), is regarded as constructed of polypeptides of the coiled-coil dominated protein TPR to which other proteins can bind without contributing to the NB’s structural integrity. Here we report vertebrate protein ZC3HC1 as a novel inherent constituent of the NB, common at the nuclear envelopes (NE) of proliferating and non-dividing, terminally differentiated cells of different morphogenetic origin. Formerly described as a protein of other functions, we instead present the NB component ZC3HC1 as a protein required for enabling distinct amounts of TPR to occur NB-appended, with such ZC3HC1-dependency applying to about half the total amount of TPR at the NEs of different somatic cell types. Furthermore, pointing to an NB structure more complex than previously anticipated, we discuss how ZC3HC1 and the ZC3HC1-dependent TPR polypeptides could enlarge the NB’s functional repertoire.
In eukaryotic cells, the nucleus is a complex and sophisticated organelle containing genomic DNA and supports essential cellular activities. Its surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It has been observed that the nuclear volume and the number of NPCs almost doubles during interphase in dividing cells, but the coordination of these events with the cell cycle was poorly understood, particularly in mammalian cells. Recently, we demonstrated that cyclin-dependent protein kinases (Cdks) control interphase NPC formation in dividing human cells. Cdks drive the very early step of NPC formation because Cdk inhibition suppressed the generation of "nascent pores," which are considered to be immature NPCs, and disturbed expression and localization of some nucleoporins. Cdk inhibition did not affect nuclear volume, suggesting that these two processes have distinct regulatory mechanisms in the cell cycle. The details of our experimental systems and finding are discussed in more depth. With new findings recently reported, we also discuss possible molecular mechanisms of interphase NPC formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.