The inhibitory effects of a novel, orally active matrix metalloproteinase (MMP) inhibitor, ONO-4817, on the development of uterine adenomyosis induced experimentally by pituitary grafting were examined in mice. Mice were given transplants of isologous anterior pituitary glands (PGs) into the right uterine lumen at 7 weeks of age and were fed chow containing 0.1% to 1.0% ONO-4817 from 8 to 14 weeks of age. Mice treated with 0.3% or 1.0% ONO-4817 showed a significantly lower incidence of the development of adenomyosis than vehicle-treated mice. To evaluate the inhibitory effects of ONO-4817 on the progression of the invasion of the adenomyotic tissues, mice receiving PG grafts at 7 weeks of age were treated with 1.0% ONO-4817 from 13 to 17 weeks of age. The degree of pathological progression of adenomyosis was graded from 1 to 5 in increments of 1. The degree of the progression of the lesion was less in the uteri exposed to ONO-4817 (2.71 ± 0.93) than in the uteri not exposed to the inhibitor (4.33 ± 0.75). Finally, the invasiveness of endometrial stromal cells obtained from adenomyotic uteri into Matrigel consisting mainly of type IV collagen and laminin was examined using an invasion assay. The assay showed that the treatment with ONO-4817 markedly suppressed the invasion of the stromal cells of the adenomyotic uteri into the gel. These results indicate that ONO-4817 may be an effective inhibitor of the development of adenomyosis.
We synthesize CdS/PbS -coated nanoparticles and investigate the spectra of their optical absorption and photoluminescence (PL). The experimental results can be explained by the quantum-confinement model in coated semiconductor nanoparticles. We also prepare gold-coated nanoparticles with a nonmetallic core Au 2 S by a two-step colloidal method, and observe the extraordinary optical absorption spectra of the coated samples. The results are consistent with a theoretical approach that includes electromagnetic resonance effects and the quantum confinement of the carriers in the thin gold shell layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.