Plants exhibit an ultimate case of the intracellular motility involving rapid organelle trafficking and continuous streaming of the endoplasmic reticulum (ER). Although it was long assumed that the ER dynamics is actomyosin-driven, the responsible myosins were not identified, and the ER streaming was not characterized quantitatively. Here we developed software to generate a detailed velocity-distribution map for the GFP-labeled ER. This map revealed that the ER in the most peripheral plane was relatively static, whereas the ER in the inner plane was rapidly streaming with the velocities of up to ∼3.5 μm/sec. Similar patterns were observed when the cytosolic GFP was used to evaluate the cytoplasmic streaming. Using gene knockouts, we demonstrate that the ER dynamics is driven primarily by the ER-associated myosin XI-K, a member of a plant-specific myosin class XI. Furthermore, we show that the myosin XI deficiency affects organization of the ER network and orientation of the actin filament bundles. Collectively, our findings suggest a model whereby dynamic three-way interactions between ER, F-actin, and myosins determine the architecture and movement patterns of the ER strands, and cause cytosol hauling traditionally defined as cytoplasmic streaming.myosin XI | actin filament | cytoplasmic streaming | velocity distribution map | Arabidopsis thaliana C ytoplasmic streaming, defined as an extensive intracellular motility in plants, was first described in 1774 (1). It is thought that unidirectional actin filament (AF) bundles and organelleassociated myosin XI, a plant-specific class of myosin motors, cause bulk flow in the cell (reviewed in refs. 2-4). Some myosin XI were indeed reported to slide along AFs in vitro (5, 6). Using immunocytochemical analyses (7-11) and fluorescent proteinlabeled myosins (12, 13), myosin XI have been shown to be associated with the particulate organelles. Recent analyses using gene knockouts and dominant-negative inhibition demonstrated that several class XI myosins have overlapping functions in the rapid movement of organelles (14-18). Among these, myosin XI-K was found to play the most prominent role in the movement of Golgi bodies, peroxisomes, and mitochondria. Studies have also concluded that none of these three organelles fits the paradigm of cytoplasmic streaming, raising the question of what drives this conspicuous process (14, 15).The endoplasmic reticulum (ER), an organelle present in all eukaryotic cells, harbors the largest reservoir of cellular membranes. Cytoskeleton-dependent remodeling of the ER network, which consists of cisternae and interconnected membrane tubes, is well known in both animals and plants (reviewed in refs. 19-22). In addition, dynamic streaming of the plant ER has been observed in subperipheral cytoplasm and transvacuolar strands (23-25). However, the molecular mechanism underlying the ER streaming is not known, although it was reported that the 175 kDa myosin XI was localized on the ER of tobacco cell culture BY-2 (26).Unlike the movement of the part...
The cell nucleus communicates with the cytoplasm through a nucleocytoplasmic linker that maintains the shape of the nucleus and mediates its migration. In contrast to animal nuclei, which are moved by motor proteins (kinesins and dyneins) along the microtubule cytoskeleton, plant nuclei move rapidly and farther along an actin filament cytoskeleton. This implies that plants use a distinct nucleocytoplasmic linker for nuclear dynamics, although its molecular identity is unknown. Here, we describe a new type of nucleocytoplasmic linker consisting of a myosin motor and nuclear membrane proteins. In the Arabidopsis thaliana mutant kaku1, nuclear movement was impaired and the nuclear envelope was abnormally invaginated. The responsible gene was identified as myosin XI-i, which encodes a plant-specific myosin. Myosin XI-i is specifically localized on the nuclear membrane, where it physically interacts with the outer-nuclear-membrane proteins WIT1 and WIT2. Both WIT proteins are required for anchoring myosin XI-i to the nuclear membrane and for nuclear movement. A striking feature of plant cells is dark-induced nuclear positioning in mesophyll cells. A deficiency of either myosin XI-i or WIT proteins diminished dark-induced nuclear positioning. The unique nucleocytoplasmic linkage in plants might enable rapid nuclear positioning in response to environmental stimuli.
Myrosin cells in Capparales plants are idioblasts that accumulate thioglucoside glucohydrolase (TGG, also called myrosinase), which hydrolyzes glucosinolates to produce toxic compounds for repelling pests. Here, we show that AtVAM3 is involved in development of myrosin cells. It has been shown that yeast VAM3 is a Q(a)-SNARE that is involved in vesicle transport of vacuolar proteins and vacuolar assembly. We found that two Arabidopsis atvam3 alleles, atvam3-3 and atvam3-4/ssm, accumulate large amounts of TGG1 and TGG2 that are enzymatically active. An immunogold analysis revealed that TGGs were specifically localized in the vacuole of myrosin cells in atvam3 mutants. This result indicates that TGGs are normally transported to vacuoles in these mutants and that AtVAM3 is not essential for vacuolar transport of the proteins. We developed a staining method with Coomassie brilliant blue that detects myrosin cells in whole leaves by their high TGG content. This method showed that atvam3 leaves have a larger number of myrosin cells than do wild-type leaves. Myrosin cells were scattered along leaf veins in wild-type leaves, while they were abnormally distributed in atvam3 leaves. The mutants developed a network of myrosin cells throughout the leaves: myrosin cells were not only distributed continuously along leaf veins, but were also observed independent of leaf veins. The excess of myrosin cells in atvam3 mutants might be responsible for the abnormal abundance of TGGs and the reduction of elongation of inflorescence stems and leaves in these mutants. Our results suggest that AtVAM3 has a plant-specific function in development of myrosin cells.
Seed storage proteins are synthesized on the endoplasmic reticulum (ER) as precursors and then transported to protein storage vacuoles, where they are processed into mature forms. Here, we isolated an Arabidopsis thaliana mutant, maigo2 (mag2), that accumulated the precursors of two major storage proteins, 2S albumin and 12S globulin, in dry seeds. mag2 seed cells contained many novel structures, with an electron-dense core that was composed of the precursor forms of 2S albumin. 12S globulins were segregated from 2S albumin and were localized in the matrix region of the structures together with the ER chaperones lumenal binding protein and protein disulfide isomerase, which were more abundant in mag2 seeds. The MAG2 gene was identified as At3g47700, and the MAG2 protein had a RINT-1/TIP20 domain in the C-terminal region. We found that some MAG2 molecules were peripherally associated with the ER membrane. MAG2 had an ability to bind to two ER-localized t-SNAREs (for target-soluble NSF [N-ethylmaleimide-sensitive fusion protein] attachment protein receptor; At Sec20 and At Ufe1). Our findings suggest that MAG2 functions in the transport of storage protein precursors between the ER and Golgi complex in plants.
Plants are able to bend nearly every organ in response to environmental stimuli such as gravity and light(1,2). After this first phase, the responses to stimuli are restrained by an independent mechanism, or even reversed, so that the organ will stop bending and attain its desired posture. This phenomenon of organ straightening has been called autotropism(3) and autostraightening(4) and modelled as proprioception(5). However, the machinery that drives organ straightening and where it occurs are mostly unknown. Here, we show that the straightening of inflorescence stems is regulated by an actin-myosin XI cytoskeleton in specialized immature fibre cells that are parallel to the stem and encircle it in a thin band. Arabidopsis mutants defective in myosin XI (specifically XIf and XIk) or ACTIN8 exhibit hyperbending of stems in response to gravity, an effect independent of the physical properties of the shoots. The actin-myosin XI cytoskeleton enables organs to attain their new position more rapidly than would an oscillating series of diminishing overshoots in environmental stimuli. We propose that the long actin filaments in elongating fibre cells act as a bending tensile sensor to perceive the organ's posture and trigger the straightening system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.