Zero refractive index materials behave electromagnetically as single points despite the finite dimensions because a propagating electromagnetic wave passes with an infinite phase velocity. However, the composition of naturally occurring materials cannot produce a zero refractive index material because any effect of both of the dielectric and magnetic properties would have to vanish (be near zero). In this report, we demonstrate a zero refractive index metasurface with a refractive index of 0.16 + j0.09, the reflectance of 0.7%, and transmittance of 97.3% at 0.505 THz. The measured relative permittivity and relative permeability are 0.18 − j0.10 and 0.004 + j0.16 at 0.505 THz, respectively. Both the relative permittivity and relative permeability simultaneously approach zero at the same frequency, and the dielectric and magnetic properties appear to be absent (vanish) in the artificial material. The zero refractive index metasurface can offer a material platform for terahertz applications with unprecedented functionalities for 6G (beyond 5G) wireless communications, imaging, and security.
Terahertz flat optics is a design concept for replacing conventional three-dimensional bulky optical components with two-dimensional ultra-thin optical components. However, high refractive index materials suitable for flat optics are frequently subject to high Fresnel reflections due to the cumbersome control of the relative permeability it requires. Here we experimentally demonstrate a reflectionless metasurface with a high refractive index of 5.88 + j1.57, extremely low reflectance of 1.3%, high relative permittivity of 6.73 + j0.85, and the high relative permeability of 5.03 + j2.11 at 2.97 THz. The super-fine ink-jet printer using silver paste ink fabricates the metasurface consisting of 80,036 pairs of cut metal wires on both the front and back of a 5 μm-thick polyimide film. The findings also demonstrate that weak conductors as well as good conductors can be used in the design of reflectionless metasurfaces with a high refractive index in the terahertz waveband. The presented metasurface can offer an accessible platform for terahertz flat optics in 6G (beyond 5G) wireless communications and imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.