Japanese horseradish (wasabi) grows in very specific conditions, and recent environmental climate changes have damaged wasabi production. In addition, the optimal culture methods are not well known, and it is becoming increasingly difficult for incipient farmers to cultivate it. Chlorophyll a, b and carotenoid contents, as well as their allocation, could be an adequate indicator in evaluating its production and environmental stress; thus, developing an in situ method to monitor photosynthetic pigments based on reflectance could be useful for agricultural management. Besides original reflectance (OR), five pre-processing techniques, namely, first derivative reflectance (FDR), continuum-removed (CR), de-trending (DT), multiplicative scatter correction (MSC), and standard normal variate transformation (SNV), were compared to assess the accuracy of the estimation. Furthermore, five machine learning algorithms—random forest (RF), support vector machine (SVM), kernel-based extreme learning machine (KELM), Cubist, and Stochastic Gradient Boosting (SGB)—were considered. To classify the samples under different pH or sulphur ion concentration conditions, the end of the red edge bands was effective for OR, FDR, DT, MSC, and SNV, while a green-peak band was effective for CR. Overall, KELM and Cubist showed high performance and incorporating pre-processing techniques was effective for obtaining estimated values with high accuracy. The best combinations were found to be DT–KELM for chl a (RPD = 1.511–5.17, RMSE = 1.23–3.62 μg cm−2) and chl a:b (RPD = 0.73–3.17, RMSE = 0.13–0.60); CR–KELM for chl b (RPD = 1.92–5.06, RMSE = 0.41–1.03 μg cm−2) and chl a:car (RPD = 1.31–3.23, RMSE = 0.26–0.50); SNV–Cubist for car (RPD = 1.63–3.32, RMSE = 0.31–1.89 μg cm−2); and DT–Cubist for chl:car (RPD = 1.53–3.96, RMSE = 0.27–0.74).
Leaf chlorophyll content is used as a major indicator of plant stress and growth, and hyperspectral remote sensing is frequently used to monitor the chlorophyll content. Hyperspectral reflectance has been used to evaluate vegetation properties such as pigment content, plant structure and physiological features using portable spectroradiometers. However, the prices of these devices have not yet decreased to consumer-affordable levels, which prevents widespread use. In this study, a system based on a cost-effective fingertip-sized spectrometer (Colorcompass-LF, a total price for the proposed solution was approximately 1600 USD) was evaluated for its ability to estimate the chlorophyll contents of radish and wasabi leaves and was compared with the Analytical Spectral Devices FieldSpec4. The chlorophyll contents per leaf area (cm2) of radish were generally higher than those of wasabi and ranged from 42.20 to 94.39 μg/cm2 and 11.39 to 40.40 μg/cm2 for radish and wasabi, respectively. The chlorophyll content was estimated using regression models based on a one-dimensional convolutional neural network (1D-CNN) that was generated after the original reflectance from the spectrometer measurements was de-noised. The results from an independent validation dataset confirmed the good performance of the Colorcompass-LF after spectral correction using a second-degree polynomial, and very similar estimation accuracies were obtained for the measurements from the FieldSpec4. The coefficients of determination of the regression models based on 1D-CNN were almost same (with R2 = 0.94) and the ratios of performance to deviation based on reflectance after spectral correction using a second-degree polynomial for the Colorcompass-LF and the FieldSpec4 were 4.31 and 4.33, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.