We examined bone mineral density (BMD) of the femoral neck and lumbar vertebrae of four chimpanzee skeletons from Mahale Mountains National Park, Tanzania, and four captive ones, with a dual energy X-ray absorptiometer. The BMD of Wansombo, an old female chimpanzee from Mahale, was remarkably lower than the mean of the other six younger adult female chimpanzees and categorized as osteoporosis. Posture, locomotion, and trunk-sacral anatomy of chimpanzees may have prevented fractures in Wansombo, whose BMD was below human osteoporosis criteria.
The aims of this study were to describe the curvature of anthropoid limb bones quantitatively, to determine how limb bone curvature scales with body mass, and to discuss how bone curvature influences static measures of bone strength. Femora and humeri in six anthropoid genera of Old World monkeys, New World monkeys, and gibbons were used. Bone length, curvature, and cross-sectional properties were incorporated into the analysis. These variables were obtained by a new method using three-dimensional morphological data reconstructed from consecutive CT images. This method revealed the patterns of curvature of anthropoid limb bones. Log-transformed scaling analyses of the characters revealed that bone length and especially bone curvature strongly reflected taxonomic/locomotor differences. As compared with Old World monkeys, New World monkeys and gibbons in particular have a proportionally long and less curved femur and humerus relative to body mass. It is also revealed that the section modulus relative to body mass varies less between taxonomic/locomotor groups in anthropoids. Calculation of theoretical bending strengths implied that Old World monkeys achieve near-constant bending strength in accordance with the tendency observed in general terrestrial mammals. Relatively shorter bone length and larger A-P curvature of Old World monkeys largely contribute to this uniformity. Bending strengths in New World monkeys and gibbons were, however, a little lower under lateral loading and extremely stronger and more variable under axial loading as compared with Old World monkeys, due to their relative elongated and weakly curved femora and humeri. These results suggest that arboreal locomotion, including quadrupedalism and suspension, requires functional demands quite dissimilar to those required in terrestrial quadrupedalism.
Skeletal maturation in the chimpanzee hand and wrist (the RUS system; radius, ulna, and short bones) was studied both longitudinally and cross-sectionally. Maturity states were evaluated in each of the 13 bones of the RUS system based on the TW2 method (Tanner and Whitehouse method), and the RUS score was calculated by the summation of scores for these bones. Individual variation was examined by means of residual curves and pseudo-velocity curves of RUS score and anterior trunk length (ATL). Norms of the age change pattern in RUS skeletal maturation and the growth of ATL were determined for each sex, and the relationships among ATL growth and skeletal and reproductive maturation were examined. We found a fairly good relationship between ATL growth and RUS skeletal maturation. Comparison of growth and development between humans and chimpanzees showed that growth characteristics are coupled with each other at puberty in male chimpanzees and in both sexes of humans. Although nutritional condition influenced ATL growth in infancy, it had no effect on the RUS maturational process. Social relationships appeared to influence both ATL growth and RUS maturation. Analyses on relationships between RUS skeletal maturation, ATL growth, and reproductive maturation, showed that RUS skeletal maturation is a good indicator of "physiological age".
To understand the mechanical effects of different modes of locomotion on the femoral neck of chimpanzees, we investigated the cross-sectional morphology of the femoral neck of 4 chimpanzees (Pan troglodytes schweinfurthii) collected from the Mahale Mountains, Tanzania. We performed serial computed tomography (CT) scans of the neck from the femoral head to the base of the neck perpendicular to the long axis of the neck. We measured the cortical thickness of the serial 5 cross sections of the neck region every 45°around the circumference, i.e., 8 points per section, and examined the cross-sectional properties of the mid-section. When we compared the superior and inferior parts of the cortical thickness of the femoral neck, the inferior part exhibited the greatest cortical thickness whereas the superior part had the smallest values in every specimen. Researchers have also observed such regional differences between superior and inferior cortical thicknesses in bipedal humans and other primates, although these differences are not as large in the chimpanzee as in bipedal hominini. The present study differed from the past study on hominini and chimpanzees in that the superior anterior (SA) part exhibited greater cortical thickness in chimpanzees. We believe these observations reflect the structural strengthening of parts of the chimpanzee femoral neck that is needed to accommodate the mechanical loads imposed by arboreal vertical climbing and terrestrial quadrupedal and bipedal locomotion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.