Classical optimization and search algorithms are not effective for nonlinear, complex, dynamic large-scaled problems with incomplete information. Hence, intelligent optimization algorithms, which are inspired by natural phenomena such as physics, biology, chemistry, mathematics, and so on have been proposed as working solutions over time. Many of the intelligent optimization algorithms are based on physics and biology, and they work by modelling or simulating different nature-based processes. Due to philosophy of constantly researching the best and absence of the most effective algorithm for all kinds of problems, new methods or new versions of existing methods are proposed to see if they can cope with very complex optimization problems. Two recently proposed algorithms, namely ray optimization and optics inspired optimization, seem to be inspired by light, and they are entitled as light-based intelligent optimization algorithms in this paper. These newer intelligent search and optimization algorithms are inspired by the law of refraction and reflection of light. Studies of these algorithms are compiled and the performance analysis of light-based i ntelligent optimization algorithms on unconstrained benchmark functions and constrained real engineering design problems is performed under equal conditions for the first time in this article. The results obtained show that ray optimization is superior, and effectively solves many complex problems.
Computational intelligence search and optimization algorithms have been efficiently adopted and used for many types of complex problems. Optics Inspired Optimization (OIO) is one of the most recent physics inspired computational intelligence methods which treats the search space of the problem to be optimized as a wavy mirror in which each peak is assumed to reflect as a convex mirror and each valley to reflect as a concave one. Each candidate solution is treated as an artificial light point that its glittered ray is reflected back by the search space of the problem and the artificial image is formed based on mirror equations adopted from Optics, as a new candidate solution. In this study, OIO for the first time has been designed as solution search strategy for travelling tournament problem which is one of the current sports problems and aids to minimize transportation and total movement of teams. Furthermore, this problem has been firstly solved by League Championship Algorithm and obtained results from both synthetic and real datasets have been compared in this study for the first time. Obtained results show the superiority of OIO which is a novel algorithm and seems to efficiently solve many complex problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.