In this study, fully recyclable and elastic–plastic deformable sandwich panels were developed by considering the mass production requirements, as well as the lightweighting needs of the automotive industry. Expanded polypropylene (EPP) foam core and self-reinforced polypropylene (PP) thermoplastic composite face sheets were selected to produce sandwich panels. Three-point bending experiments were performed to obtain the flexural behavior of the sandwich panels. Finite-element analysis (FEA) of the sandwich beams was carried out and confirmed by experimental results. Three different EPP foam cores with densities of 65.7, 36.5 and 27.0 kg/m3 were used. The FEA models were built in the Abaqus commercial software in three-dimensional (3D) space, and analyses were performed using 3D elements. The crushable foam material model was selected for FEA from the Abaqus material model database to obtain the best correlation with the foam compression test results. The force–displacement results of the three-point bending FEA results excellently correlated with the experiments. In three-point bending experiments of the sandwich panels, elastic–plastic deformation of the core with indentation failure was observed. The lowest-density foam core sandwich beam showed the highest deformation and energy absorption performance. Also, deflection recovery was observed after load removal for all sandwiches.
In this paper, the dynamic compression impact response of an aluminum honeycomb core filled with open-cell foams impregnated with self-healing liquid agents was investigated experimentally. Samples were subjected to a variety of impacts in order to determine healing time and self-healing performance. Three different sandwich specimens were developed to evaluate the effectiveness of self-healing. The sandwich specimens are designated as B (empty honeycomb core cells), S (only open-cell soft polyurethane foam-filled honeycomb core cells), and self-healing agent (SHA) (open-cell soft polyurethane foams impregnated with liquid self-healing agents). The test results were presented by considering the crashworthiness and healing efficiency criteria, and the impact characteristics of the samples were compared related to these criteria. After testing, the results demonstrated that the self-healing agent specimens had much fewer buckling deformation and displacement than their counterparts. Significant improvements were achieved in healing efficiencies and crashworthiness evaluation criteria. The peak load and the energy needed to attain peak load are considered healing efficiency criteria. Self-healing agent specimens reached 29.7% and 12.9% more peak loads, and in the energy absorbed up to peak loads 140% and 34.9% higher values than the B and S sandwiches. In the same samples, crushing strain features were acquired as 50% versus 66%, indicating less displacement in self-healing agent specimens than counterparts. The results indicated that an aluminum honeycomb sandwich structure that can heal itself after damage and recover impact characteristics remarkably could be produced practically.
In this study, the headlamp of a light commercial vehicle was optimized in the way of pedestrian safety. This work aims to prevent harms to pedestrians in the urban crashes. Finite element analysis models of current headlamp and impactors representing pedestrian body forms were created. Static, modal and dynamic/explicit analyses were carried out by using existing and optimized headlamp models. Both models were in the simulations under the same boundary conditions. The results of two conditions were compared with each other. The results showed that connection regions of the headlamp have a major effect on pedestrian safety in pedestrian-vehicle collisions.
In this study, the impact behavior of sandwich panels of natural rubber-based syntactic foam cores with aluminum face sheets was investigated experimentally and with the help of finite element analysis (FEA). Syntactic foam cores were produced byadding glass bubbles (GB) to the natural rubber (NR). Natural rubber was dissolved at room temperature with chemical solvents mixed with glass bubbles at 10, 20, and 30 weight percentages. Very low density (~0.8 g × cm-3) and high compressible foams were obtained depending on the GB weight percentages. Aluminum face sheets and the NR/GB syntactic foam core developed were joined by adhesive bonding to produce sandwich beam specimens. The sandwich beams manufactured in this way were subjected to impact loading under three-point bending boundary conditions experimentally. The experimental results were compared with finite element simulation results under the same loading and boundary conditions. The damage mechanism of the sandwich panels devised were analyzed. According to the results, natural rubber containing an additive of 20 wt.-% GBs showed better impact resistance than the others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.