The main aim of this paper is to introduce mechanical, thermal and surface properties of produced industrially HDPE-based nanocomposites. For this purpose, 1.0, 2.0, 3.0, 4.0 and 5.0 wt.% loading of nanoclay-reinforced HDPE nanocomposites made from the HDPE matrix were prepared by the melt mixing method using a compounder system, which consist of industrial banbury mixer, single screw extruder and granule cutting. The effect of nanoclay on mechanical, thermal and surface properties of nanoclay/HDPE nanocomposites was investigated. The tensile and flexural strength of nanoclay/HDPE nanocomposite increased by about 5% and 7%, respectively, with addition of 1.0 wt.% nanoclay. But then it decreased slightly as the nanoclay content increased to 5.0 wt.%. The tensile modulus and tensile elongation were decreased with the addition of 1.0 wt.% nanoclay, but did not increase further as more nanoclay was added. The flexural modulus of HDPE was significantly improved after (from 1.0 wt.% up to 5.0 wt.%) addition of nanoclay. It was found that the scratch resistance of nanoclay/HDPE nanocomposite improved with addition of the nanoclay by SEM examination. Density, melting flow index (MFI), differential scanning colorimetry (DSC), and vicat softening temperature (VICAT) were used to characterize the physical and thermal properties of the nanocomposites. The X-ray diffraction (XRD), the Fourier transform infrared spectrophotometry (FTIR), and the scanning electron microscopy (SEM) were used to analyze the structural characteristics of the nanocomposites. It is concluded that the addition of the nanoclay in HDPE has significantly influenced the mechanical, thermal, and surface properties of the nanocomposites.
The objective of this study is to examine the mechanical, thermal, and physical properties of industrially produced nano-CaCO3 filled high-density polyethylene nanocomposites. For this purpose, 1.0, 3.0, 5.0, 10.0, and 15.0 wt.% loading of nano-CaCO3 filled high-density polyethylene nanocomposites were prepared by the melt mixing method using a compounder system, which consist of industrial banbury mixer, single screw extruder, and granule cutting. The effect of nano-CaCO3 on mechanical, thermal, and physical properties of nano-CaCO3/HDPE nanocomposites was investigated. As a result of all experiments, the tensile strength of nano-CaCO3 filled high-density polyethylene nanocomposite increased about 5% with addition of 1.0 wt.% nano-CaCO3. But did not increase further as more nano-CaCO3 was added. The flexural strength of nano-CaCO3 filled high-density polyethylene nanocomposite increased about 4.5% with addition of 15.0 wt.% nano-CaCO3.Then increased slightly as the nano-CaCO3 content increased to 15.0 wt.%. The tensile and flexural modulus of high-density polyethylene were significantly improved after (from 1.0 wt.% up to 15.0 wt.%) addition of nano-CaCO3. The tensile elongation at break and shore D hardness was consistently decreased with the addition of nano-CaCO3. The nano-CaCO3 filled high-density polyethylene nanocomposites were determined to have lower impact energy level than neat high-density polyethylene. The occurred fracture areas with the impact were detected by scanning electron microscopy examination. It is understood that fracture surface morphology changes when nano-CaCO3 ratio increases. The fracture surface changes were examined to determine the fracture mechanism of nano-CaCO3 filled high-density polyethylene nanocomposites. Density, melting flow index, differential scanning colorimetry, and vicat softening temperature were used to characterize the physical and thermal properties of the nanocomposites. The X-ray diffraction, the fourier transform infrared spectrophotometry, the transmission electron microscopy, and the scanning electron microscopy were used to analyze the structural characteristics of the nanocomposites. It is concluded that the addition of the nano-CaCO3 in high-density polyethylene has significantly influenced the mechanical, thermal, and physical properties of the nanocomposites.
The main purpose of this work is to study how the morphology of nanofillers and dispersion and distribution level of inorganic nanofiller influence the impact behavior and fracture probability of inorganic filler filled industrial high-density polyethylene nanocomposites. For this study, nanoclay and nano-CaCO3 fillers–high-density polyethylene mixings (0, 1, 3, 5 wt.% high-density polyethylene) was prepared by melt-mixing method using a compounder system. The impact behavior was examined by charpy impact test, scanning electron microscopy, and probability theory and statistics. The level of the dispersion was characterized with scanning electron microscopy energy dispersive X-ray spectroscopy analysis. The results showed rather good dispersion of both of inorganic nanofiller, with a mixture of exfoliated and confined morphology. The results indicated that the impact strength of the industrial nanocomposite decreased with the increase of inorganic particulate content. The impact reliability of the industrial nanocomposites depends on the type of nanofillers and their dispersion and distribution in the matrix.
This paper presents the experimental study of mechanical and thermal properties of organically modified montmorillonite clay (Nanoclay) (0, 1, 2, 3, 4 and 5 wt.%) in the vinyl ester matrix by ultrasonic stirrer. The changes in mechanical properties are investigated by using tensile and impact testing machine. It was found that the addition of nanoclay particles significantly improved tensile properties of pure vinyl ester, but impact properties of pure vinyl ester were affected negatively with the nanoclay content in the nanocomposite. It was found that the absorbed energy and impact resistance of the nanocomposites decreased with increasing the nanoclay content. DSC curves showed the glass transition temperature change in the nanoclay reinforced vinyl ester nanocomposites as compared to the pure vinyl ester. XRD analysis was performed to identify the structure of nanocomposites. SEM results showed the change in fracture surface morphology of nanoclay reinforced vinyl ester nanocomposite. Also, homogeneous distribution of nanoclays in the matrix was showed by SEM micrographs. This observation helped in identifying the morphology of the nanocaly in the vinyl ester matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.