A fish plasma model (FPM) has been proposed as a screening technique to prioritize potential hazardous pharmaceuticals to wild fish. However, this approach does not account for inter- or intraspecies variability of pharmacokinetic and pharmacodynamic parameters. The present study elucidated the uptake potency (from ambient water), tissue distribution, and biological risk of 20 pharmaceutical and personal care product (PPCP) residues in wild cyprinoid fish inhabiting treated-wastewater-impacted streams. In order to clarify the uncertainty of the FPM for PPCPs, we compared the plasma bioaccumulation factor in the field (BAFplasma = measured fish plasma/ambient water concentration ratio) with the predicted plasma bioconcentration factor (BCFplasma = fish plasma predicted by use of theoretical partition coefficients/ambient water concentration ratio) in the actual environment. As a result, the measured maximum BAFplasma of inflammatory agents was up to 17 times higher than theoretical BCFplasma values, leading to possible underestimation of toxicological risk on wild fish. When the tissue-blood partition coefficients (tissue/blood concentration ratios) of PPCPs were estimated, higher transportability into tissues, especially the brain, was found for psychotropic agents, but brain/plasma ratios widely varied among individual fish (up to 28-fold). In the present study, we provide a valuable data set on the intraspecies variability of PPCP pharmacokinetics, and our results emphasize the importance of determining PPCP concentrations in possible target organs as well as in the blood to assess the risk of PPCPs on wild fish.
Root-to-shoot communication plays an important role in the adaptation to environmental stress. In this study, we established a model system for root-to-shoot signalling to observe global gene expression in Arabidopsis thaliana. The roots of Arabidopsis seedlings were wounded and the expression in the shoots of 68 and 5 genes was up-regulated threefold at 30 min and 6 h post-injury, respectively. These genes were designated early and late Root-to-Shoot responsive (RtS) genes, respectively. Many of the early RtS genes were found to encode transcription factors such as AtERFs, whereas others were associated with jasmonic acid (JA) and ethylene (ET). Some of the late RtS genes were shown to be regulated by 12-oxo-phytodienoic acid (OPDA). In fact, elevated levels of JA and OPDA were detected in the shoots of seedlings 30 min and 6 h, respectively, after wounding of the roots. A mutant analysis revealed that JA and ET are involved in the expression of the early RtS genes. Thus, root-to-shoot communication for many RtS genes is associated with the systemic production of JA, OPDA and possibly ET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.