BackgroundBacterial biofilms that develop on root surfaces outside apical foramens have been found to be associated with refractory periapical periodontitis. However, several other factors cause endodontic failures apart from extraradicular biofilms. The aim of this study was to identify the factors causing endodontic failures in general practices in Japan.MethodsPatients diagnosed as having refractory periapical periodontitis by general practitioners and who requested endodontic treatment at Osaka University Dental Hospital were selected by checking medical records from April 2009 to March 2013. Factors causing endodontic failures were identified.ResultsA total of 103 teeth were selected, and 76 teeth completed root-canal treatment. Tooth extractions were required for 18 teeth after or without endodontic treatment. Six teeth required apicoectomy after endodontic treatment. One tooth needed hemisection. One tooth needed intentional replantation. One tooth needed adhesion and replantation. The main causes of treatment failure were open apices (24 teeth), perforation (18 teeth), and root fracture (13 teeth). In six teeth with open apices that required apicoectomy or extraction, extraradicular biofilms may have been related to endodontic failure.ConclusionsMost endodontic cases diagnosed with refractory periapical periodontitis by general practitioners were compromised by any other factors rather than extraradicular biofilms.Electronic supplementary materialThe online version of this article (10.1186/s12903-018-0530-6) contains supplementary material, which is available to authorized users.
Various disease-related genes have recently been identified using single nucleotide polymorphisms (SNPs). This study identified disease-related genes by analyzing SNP using genomic DNA isolated from Japanese patients with periapical periodontitis. Results showed that the SNP in LRP5 demonstrated a significant genotypic association with periapical lesions (Fisher’s exact test, P < 0.05). We constructed an in vivo murine periapical periodontitis model to confirm the Wnt/β-catenin signaling pathway’s role in developing and healing periapical periodontitis. We observed that administration of the Wnt/β-catenin signaling pathway inhibitor enlarged the periapical lesion. Moreover, applying lithium chloride (LiCl) to root canals accelerated periapical periodontitis healing. Histological analysis demonstrated that the expression levels of Col1a1 and Runx2 increased in the LiCl application group compared to that in the control group. Furthermore, many CD45R-positive cells appeared in the periapical lesions in the LiCl application group. These results indicated that LiCl promoted the healing of periapical periodontitis by inducing bone formation and immune responses. Our findings suggest that the Wnt/β-catenin signaling pathway regulates the development of periapical periodontitis. We propose a bioactive next-generation root canal treatment agent for this dental lesion.
We recently developed a simple strategy for the enrichment of mesenchymal stem cells (MSCs) with the capacity for osteoblast, chondrocyte, and adipocyte differentiation. On transplantation, the progenitor-enriched fraction can regenerate bone with multiple lineages of donor origin. Although comprising multiple precursor cell types, the population is enriched >100-fold in osteoprogenitors, hence the name "highly purified osteoprogenitors" (HipOPs). To establish a new modified method of purifying pure MSCs, it is useful to know the expression patterns of surface markers on heterogeneous MSCs and committed cells such as osteoblasts, adipocytes, and chondrocytes. However, calcium deposition by osteoblasts is a critical obstacle in visualizing the expression patterns of surface markers. We now report a new method of separating differentiated osteoblastic HipOPs (OB-HipOPs) from calcium deposits using the Percoll density gradient centrifugation technique. After centrifuge separation, calcium deposits were observed at the bottom of the centrifuge tube, and living OB-HipOPs were harvested from the 10-70% fractions. However, there were no living cells in the 70-80% fraction. We concluded that living OB-HipOPs are separated by one 10-70% Percoll gradient. Furthermore, we analyzed the expression patterns of putative MSC markers on differentiated HipOPs. FACS analysis revealed that Sca-1, CD44, CD73, CD105, and CD106 were decreased in OB-HipOPs. In adipogenic- and chondrogenic-HipOPs, Sca-1, CD73, CD105, and CD106 were decreased. This new technique is a helpful tool to identify MSC surface markers and to clarify in more detail the differentiation stages of osteoblasts.
Studies describing the effects of leukemia inhibitory factor (LIF) on adipocyte differentiation in murine cells have shown varying results. For example, LIF has been reported to have a suppressive effect on adipocyte differentiation in the 3T3-L1 cell line, whereas it promoted adipocyte differentiation in the Ob1771 and 3T3-F442A cell lines. Thus, it is possible that the effects of LIF on adipogenesis vary with the developmental stage of the cells or tissues, but the details remain unclear. To further elucidate the role of LIF in adipogenesis, we investigated the effects of LIF on murine bone marrow stromal cells at the early and late stages of adipogenesis. LIF decreased the number of lipid foci and suppressed the expression levels of adipocyte differentiation markers at day 5; however, it enhanced these same traits at day 15. A previous report showed that the expression levels of Wnt signaling molecules are different at the early and late differentiation stages; therefore, we investigated the relationship between LIF and Wnt signaling. LIF affected the mRNA expression levels of different Wnt signaling molecules but inhibited the expression level of β-catenin protein at both days 5 and 15. Our data suggest that LIF has reciprocal roles during the early and late stages of adipocyte differentiation, regulating the Wnt signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.