We fabricated porous polymeric membranes using the miniemulsion templating method to investigate the transmitted and scattered lights in terms of the Christiansen filter effect. This method made it possible to produce porous polymeric membranes with different refractive indices by polymerization of different monomers and copolymerization of monomers. When a membrane with an opencellular structure was immersed in a liquid, the transmitted light was observed at a wavelength where the refractive indices of the polymeric phase and the liquid matched. Angle-independent color derived from the scattered light could also be observed. When the porous membrane of poly(2-ethylhexyl methacrylate) (EHMA) was immersed in a mixture of different kinds of liquids, the maximum wavelength of the transmission (λ max ) changed according to the refractive index matching of the polymeric phase and the liquid, resulting in the change in coloration. Next, when the P(EHMA-co-EGDMA) membrane was immersed in a mixture of toluene and D-limonene, λ max and color varied depending on their mixing ratios. This coloration was controlled by temperature and the refractive indices of the polymeric phase and the liquid. Furthermore, we could estimate the refractive index of PEGDMA using λ max values obtained by immersing it into liquids with different refractive indices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.