Fruit Brix is an important indicator in determining the quality of tomatoes (Solanum lycopersicum), and increasing it is an important objective. The production of high Brix tomatoes requires breeding and genetic studies of fruit. During domestication S. lycopersicum lost genetic variation of some wild tomato relative that could be useful for breeding. In this study, we investigated introgression lines (ILs) from a cross between the wild relative Solanum pennellii and the cultivated tomato S. lycopersicum 'M82'. While there are many genetic and physiological studies that demonstrate the usefulness of tomato S. pennellii ILs, few have investigated the high Brix values of IL fruit. Accordingly, we attempted to detect tomato ILs that resulted in high Brix ripening fruit, in order to obtain valuable genetic and genomic resources for the investigation of phenotypes originating in the S. pennellii genome. IL5-4 may be a line that carries an S. pennellii chromosome segment on chromosome 5 of 'M82'. Previous research indicated that IL5-4 fruit have higher Brix levels than 'M82' fruit. Our results corroborated these findings and revealed Brix changes in fruit during development. We also found that IL5-4 plants showed a higher incidence of blossom-end rot (BER), a major physiological disorder in tomatoes. Therefore, we investigated the physiological mechanism responsible for the higher incidence of BER in IL5-4, by focusing on calcium content, which may be related to BER occurrence. The total and water-soluble Ca contents of fruit tissues were significantly lower in IL5-4 than in 'M82' in the proximal part, while no differences were observed in the distal part. Thus, our results suggested that a higher incidence of BER in IL5-4 fruit may not be related to both total and water-soluble Ca contents in the distal fruit tissue, and genetic factors originating in the S. pennellii chromosome may induce high BER incidence in IL5-4. The characterization of IL5-4 in this study showed that it is a valuable genetic and genomic resource for high-Brix breeding stock and for the investigation of novel BER mechanisms.
Fruit mass is an important factor for determining the yield of tomatoes (Solanum lycopersicum), with higher mass being an important objective. Most fruit traits, including fruit mass, are quantitative, and numerous quantitative trait loci (QTL) control these traits. Previous studies investigating tomato introgression lines (ILs) revealed several QTLs for fruit yield, and suggested that IL12-1 is a potential line to increase fruit mass. Our aim was to facilitate genetic studies of the diverse characteristics of wild relatives of tomato. Therefore, tomato ILs from a cross between Solanum pennellii and the cultivar S. lycopersicum 'M82' were used. ILs that carry a S. pennellii chromosome segment on chromosome 12 of 'M82' were evaluated further for fruit mass expansion and regulation. IL12-1-1, a subline of IL12-1, was found to produce large ripening fruits compared with 'M82', a phenotype that resulted in increased pericarp thicknesses. To investigate the physiological mechanisms contributing to the increased fruit mass of IL12-1-1, the cell counts of fruit pericarp tissues during fruit development were evaluated. Cell numbers of IL12-1-1 fruit pericarp at 20 days after flowering were higher than those of 'M82', a difference that most likely occurred during the cell division phase. In addition, the levels of the phytohormones auxin and cytokinin, which are known to be related to cell division of the fruit tissue, were higher in IL12-1-1 compared with 'M82'. Therefore, differences in these phytohormones between 'M82' and IL12-1-1 may be affected by the number of cells in the pericarp tissues. Expression analysis of Solyc12g005250 (SlKLP) and Solyc12g005310 (SlGH3-15), which are located in the IL12-1-1 region of the S. pennellii chromosome, showed significant differences between 'M82' and IL12-1-1 during the cell division phase; a better understanding of IL12-1-1 cellular and molecular features can contribute to the breeding and increased production of tomato crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.