Meis1 and Hoxa9 expression is upregulated by retroviral integration in murine myeloid leukemias and in human leukemias carrying MLL translocations. Both genes also cooperate to induce leukemia in a mouse leukemia acceleration assay, which can be explained, in part, by their physical interaction with each other as well as the PBX family of homeodomain proteins. Here we show that Meis1-deficient embryos have partially duplicated retinas and smaller lenses than normal. They also fail to produce megakaryocytes, display extensive hemorrhaging, and die by embryonic day 14.5. In addition, Meis1-deficient embryos lack well-formed capillaries, although larger blood vessels are normal. Definitive myeloerythroid lineages are present in the mutant embryos, but the total numbers of colony-forming cells are dramatically reduced. Mutant fetal liver cells also fail to radioprotect lethally irradiated animals and they compete poorly in repopulation assays even though they can repopulate all hematopoietic lineages. These and other studies showing that Meis1 is expressed at high levels in hematopoietic stem cells (HSCs) suggest that Meis1 may also be required for the proliferation/self-renewal of the HSC.
Stimulation of human neutrophils with tumor necrosis factor-α (TNF), granulocyte-macrophage colony-stimulating factor (GM-CSF), or granulocyte CSF (G-CSF) resulted in decreased fluorescence intensity of FITC-phalloidin (actin depolymerization) and morphological changes. Cytokine-induced actin depolymerization was dependent on the concentration of cytokines used as stimuli. The maximal changes were detected at 10 min after stimulation with TNF or GM-CSF and at 20 min after stimulation with G-CSF. Cytokine-induced actin depolymerization was sustained for at least 30 min after stimulation. In contrast, N-formyl-methionyl-leucyl-phenylalanine (FMLP) rapidly (within 45 s) induced an increase in the fluorescence intensity of FITC-phalloidin (actin polymerization) and morphological changes. TNF- and GM-CSF-induced actin depolymerization and morphological changes, but not FMLP-induced responses, were partially inhibited by either PD-98059, an inhibitor of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase, or SB-203580, an inhibitor of p38 MAPK, and were almost completely abolished by these inhibitors in combination. G-CSF-induced responses were almost completely abolished by PD-98059 and were unaffected by SB-203580. These findings are consistent with the ability of these cytokines to activate the distinct MAPK subtype cascade in human neutrophils. Phosphorylated ERK and p38 MAPK were not colocalized with F-actin in neutrophils stimulated by cytokines or FMLP. Furthermore, FMLP-induced polarization and actin polymerization were prevented by cytokine pretreatment. These findings suggest that TNF, GM-CSF, and G-CSF induce actin depolymerization and morphological changes through activation of ERK and/or p38 MAPK and that cytokine-induced actin reorganization may be partly responsible for the inhibitory effect of these cytokines on neutrophil chemotaxis.
We investigated activation of mitogen-activated protein kinase (MAPK) subtype cascades in human neutrophils stimulated by IL-1β. IL-1β induced phosphorylation and activation of p38 MAPK and phosphorylation of MAPK kinase-3/6 (MKK3/6). Maximal activation of p38 MAPK was obtained by stimulation of cells with 300 U/ml IL-1β for 10 min. Extracellular signal-regulated kinase (ERK) was faintly phosphorylated and c-Jun N-terminal kinase (JNK) was not phosphorylated by IL-1β. IL-1β primed neutrophils for enhanced release of superoxide (O2−) stimulated by FMLP in parallel with increased phosphorylation of p38 MAPK. IL-1β also induced O2− release and up-regulation of CD11b and CD15, and both responses were inhibited by SB203580 (p38 MAPK inhibitor), suggesting that p38 MAPK activation mediates IL-1β-induced O2− release and up-regulation of CD11b and CD15. Combined stimulation of neutrophils with IL-1β and G-CSF, a selective activator of the ERK cascade, resulted in the additive effects when the priming effect and phosphorylation of p38 MAPK and ERK were assessed. IL-1β induced phosphorylation of ERK and JNK as well as p38 MAPK in human endothelial cells. These findings suggest that 1) in human neutrophils the MKK3/6-p38 MAPK cascade is selectively activated by IL-1β and activation of this cascade mediates IL-1β-induced O2− release and up-regulation of CD11b and CD15, and 2) the IL-1R-p38 MAPK pathway and the G-CSF receptor-ERK pathway work independently for activation of neutrophils.
Summary The effect of granulocyte colony‐stimulating factor (G‐CSF) on human neutrophil motility was studied using videomicroscopy. Stimulation of neutrophils with G‐CSF resulted in enhanced motility with morphological change and increased adherence. Enhanced neutrophil motility was detected within 3–5 min after G‐CSF stimulation, reached a maximum at 10 min, and was sustained for approximately 35 min. The maximum migration rate was 84·4 ± 2·9 μm/5 min. A study using the Boyden chamber method revealed that G‐CSF‐stimulated neutrophils exhibited random migration but not chemotaxis. Enhanced neutrophil motility and morphological change were inhibited by MEK [mitogen‐activated protein kinase (MAPK)/extracellular signal‐regulated kinase (ERK) kinase] inhibitors (PD98059 and U0126), and a phosphatidylinositol 3‐kinase (PI3K) inhibitor (wortmannin), but not by a p38 MAPK inhibitor (SB203580). These findings are consistent with the fact that G‐CSF selectively activates MEK/ERK and PI3K, but not p38, in neutrophils. MEK/ERK activation was associated with G‐CSF‐induced redistribution of F‐actin and phosphorylated myosin light chain. Enhanced neutrophil motility was observed even in the presence of neutralizing anti‐CD18 antibody, which prevented cell adherence. These findings indicate that G‐CSF induces human neutrophil migration via activation of MEK/ERK and PI3K.
Atopic dermatitis (AD) is a complex disease of obscure pathogenesis. A substantial portion of AD patients treated with conventional therapy become intractable after several cycles of recurrence. Over the last 20 years we have developed an alternative approach to treat many of these patients by diet and Kampo herbal medicine. However, as our approach is highly individualized and the Kampo formulae sometimes complicated, it is not easy to provide evidence to establish usefulness of this approach. In this Review, to demonstrate the effectiveness of the method of individualized Kampo therapy, results are presented for a series of patients who had failed with conventional therapy but were treated afterwards in our institution. Based on these data, we contend that there exist a definite subgroup of AD patients in whom conventional therapy fails, but the 'Diet and Kampo' approach succeeds, to heal. Therefore, this approach should be considered seriously as a second-line treatment for AD patients. In the Discussion, we review the evidential status of the current conventional strategies for AD treatment in general, and then specifically discuss the possibility of integrating Kampo regimens into it, taking our case-series presented here as evidential basis. We emphasize that Kampo therapy for AD is more 'art' than technology, for which expertise is an essential pre-requisite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.