The cellular distribution and temporal expression of transcripts from transforming growth factor-beta 1 (TGF-beta 1) and procollagen alpha 1(I), alpha 1(III), and alpha 1(IV) genes were studied in carbon tetrachloride (CCl4)-induced rat liver fibrosis by using in situ hybridization technique. During the fibrotic process, TGF-beta 1 and procollagen genes were similarly and predominantly expressed in Desmin-positive perisinusoidal cells (e.g., fat-storing cells and myofibroblasts) and fibroblasts and their expression continued to be higher than those observed in control rats. These transcripts were also observed in inflammatory cells mainly granulocytes and macrophage-like cells at the early stages of liver fibrosis. The production of extracellular matrix along small blood vessels and fibrous septa coincided with the expression of these genes. Expression of TGF-beta 1 and procollagen genes were not detected in hepatocytes throughout the experiment. No significant differences in cellular distribution or time course of gene expression among procollagen alpha 1(I), alpha 1(III), and alpha 1(IV) were observed. Desmin-positive perisinusoidal cells and fibroblasts appeared to play the principal role in synthesis of collagens in CCl4-induced hepatic fibrosis. The simultaneous expression of TGF-beta 1 and procollagen genes in mesenchymal cells, including Desmin-positive perisinusoidal cells, during hepatic fibrosis suggests the possibility that TGF-beta 1 may have an important role in the production of fibrosis.
Proliferation of a new population of epithelial cells with distinct structure, as well as cytokeratin and alpha-fetoprotein expression, was observed in nonneoplastic liver tissues from 14 cases (13 hepatitis B virus-positive) of human hepatocellular carcinoma. These cells were characterized by oval nuclei; scant, pale cytoplasm; small cell size; and cross-reaction with a monoclonal antibody against rat oval cells. These putative human oval cells were strongly positive for cytokeratin 19 and displayed considerable heterogeneity in alpha-fetoprotein and albumin expression. The oval cells were most prominent in actively regenerating nodules and in liver tissue surrounding the cancer. Oval cells and transitional types of cells appear to be the principal producers of alpha-fetoprotein in the regenerating liver. Cancer cells positive for cytokeratins 8, 18 and 19 were observed in half the hepatocellular carcinomas studied. The data suggest that a new cell population structurally similar to oval cells seen in early stages of chemical hepatocarcinogenesis in rats is consistently present in regenerating liver lesions associated with human hepatocellular carcinoma. Furthermore, it is possible that the proliferation of these oval-type cells may partly account for the elevation of serum alpha-fetoprotein frequently seen in precancerous stages of hepatitis B virus-associated human hepatocellular carcinoma.
Recent studies have revealed that pregnane X receptor (PXR) can function as a master regulator to control the expression of phase I and phase II drug-metabolizing enzymes, as well as members of the drug transporter family, including multiple drug resistance (MDR) 1, which has a major role in multidrug resistance. Previously, we have demonstrated that steroid/xenobiotics metabolism by tumor tissue through the PXR-cytochrome P-450 3A (CYP3A) pathway might play an important role in endometrial cancer. In this study, we examined which endocrine-disrupting chemicals (EDCs) and anticancer agents might be ligands for PXR and whether these chemicals enhanced PXR-mediated transcription through two different PXR-responsive elements (PXREs), CYP3A4 and MDR1, in endometrial cancer cell lines. Some steroids/EDCs strongly activated PXR-mediated transcription through the CYP3A4-responsive element compared with the MDR1-responsive element, whereas these steroids/EDCs also enhanced the CYP3A4 expression compared with the MDR1 expression. In contrast, the anticancer agents, cisplatin and paclitaxel, strongly activated PXR-mediated transcription through the MDR1-responsive element compared with the CYP3A4-responsive element, whereas these drugs also enhanced the MDR1 expression compared with the CYP3A4 expression. We also analyzed how these ligands regulated PXR-mediated transcription through two different PXREs. In the presence of PXR ligands, there was no difference in the DNA binding affinity of the PXR/retinoid X receptor heterodimer to each PXRE, but there were different interactions of the coactivator to each PXR/PXRE complex. These data suggested that PXR ligands enhanced PXR-mediated transcription in a ligand- and promoter-dependent fashion, which in turn differentially regulated the expression of individual PXR targets, especially CYP3A4 and MDR1.
Recent studies have revealed that pregnane X receptor (PXR) can function as a master regulator to control the expression of drug-metabolizing enzymes, cytochrome P450 3A (CYP3A) family, and members of the drug transporter family, including multiple drug resistance 1 (MDR1). We demonstrated previously that steroid/xenobiotic metabolism by tumor tissue through the PXR-CYP3A pathway might play an important role in endometrial cancer and that PXR ligands enhance PXRmediated transcription in a ligand-and promoter-dependent fashion, leading to differential regulation of individual PXR targets, especially CYP3A4 and MDR1. In this study, we investigated the potential contribution of PXR down-regulation by RNA interference toward the augmentation of drug sensitivity and the overcoming of drug resistance. We observed the protein levels of both CYP3A4 and MDR1 in PXR small interfering RNA (siRNA)-transfected cells were not increased in the presence of PXR ligands, paclitaxel, cisplatin, estradiol, or medroxyprogesterone acetate (MPA) compared with control siRNA-transfected cells. There was no PXR-mediated transactivation or augmentation of transcription by coactivators in the presence of these ligands. We then found that PXR downregulation caused a significant increase in cell growth inhibition and enhancement of apoptosis in the presence of the anticancer agents, paclitaxel, cisplatin, and MPA. Finally, we demonstrated that PXR overexpression caused a significant decrease in cell growth inhibition and inhibited apoptosis in the presence of paclitaxel or cisplatin. These data suggest that PXR downregulation could be a novel therapeutic approach for the augmentation of sensitivity to anticancer agents, or to overcome resistance to them, in the treatment of endometrial cancer.Pregnane X receptor (PXR), a new member of the steroid receptor superfamily, has been shown to mediate the genomic effects of several steroid hormones, including progesterone, pregnenolone, and estrogen, and those of xenobiotics, and to bind to specific DNA sequences, PXR-responsive elements (PXREs) in the mouse, rat, and human (Kliewer et al
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.