We report on a suspended core tellurite microstructured optical fiber (TMOF) based optical parametric oscillator (OPO). The intracavity gain is provided by the degenerate four-wave mixing (DFWM) occurred in a 1.5-m-long TMOF synchronously pumped by a mode-locked picosecond erbium-doped fiber laser. The oscillated signal can be generated from 1606 nm to 1743.5 nm, and the idler can be emited from 1526.8 nm to 1395 nm by adjusting the pump wavelength from 1565.4 nm to 1551 nm. A total intenal conversion efficiency of -17.2 dB has been achieved.
A broadband fibre-optical parametric amplifier (FOPA) operating at a novel wavelength region that is far from the pump wavelength has been demonstrated by exploiting two pairs of adjacent four-wave mixing (FWM) sidebands generated simultaneously in a tellurite microstructured optical fibre (TMOF). Owing to the large nonlinearity of the TMOF and the high pump peak power provided by a picosecond laser, a maximal average gain of 65.1 dB has been obtained. When the FOPA is operated in a saturated state, a flat-gain amplification from 1424 nm to 1459 nm can be achieved. This broadband and high-gain FOPA operating at new wavelength regions far from the pump offers the prospect of all-optical signal processing.
Widely tunable dispersive waves (DW) and Raman solitons are generated in a tellurite microstructured optical fiber (TMOF) by pumping in the anomalous dispersion regime, close to the zero dispersion wavelength (ZDW). The DW can be generated from 1518.3 nm to 1315.5 nm, and the soliton can be shifted from the pump wavelength of 1570 nm to 1828.7 nm, by tuning the average pump power from 3 dBm to 17.5 dBm. After the average pump power is increased to 18.8 dBm, two DW peaks (centered at 1323 nm and 1260 nm) and three soliton peaks (centered at 1762 nm, 1825 nm, and 1896 nm) can be observed simultaneously. When the average pump power is greater than 23.4 dBm, a flat and broadband supercontinuum (SC) can be formed by the combined nonlinear effects of soliton self-frequency shift (SSFS), DW generation, and cross phase modulation (XPM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.