The autoimmune regulator Aire is expressed in a small proportion of medullary thymic epithelial cells (mTECs) and is crucial in the induction of central T cell tolerance. The origin and development of Aire(+) mTECs, however, are not well understood. Here we demonstrate that the tight-junction components claudin-3 and claudin-4 (Cld3,4) were 'preferentially' expressed in Aire(+) mTECs. In early ontogeny, Cld3,4(hi) TECs derived from the most apical layer of the stratified thymic anlage first expressed known mTEC markers such as UEA-1 ligand and MTS10. We provide evidence that such Cld3,4(hi) UEA-1(+) TECs represented the initial progenitors specified for Aire(+) mTECs, whose development crucially required NF-kappaB-inducing kinase and the adaptor molecule TRAF6. Our results suggest that Aire(+) mTECs represent terminally differentiated cells in a unique lineage arising during thymic organogenesis.
Immune aging results in diminished adaptive immunity and increased risk for autoimmunity. We previously reported a unique PD-1+ CD44highCD4+ T cell population that increases with age in normal mice. In this study, we indicate that the age-dependent PD-1+ CD44highCD4+ T cells develop as unique T follicular (TF) cells in a B cell–dependent manner and consist of two subpopulations, as follows: CD153+ cells preferentially secreting abundant osteopontin on TCR stimulation and CD153− cells that are apparently TCR anergic. These unique TF cells with essentially similar features increase much earlier and are accumulated in the spontaneous germinal centers (GCs) in lupus-prone female BWF1 (f-BWF1) mice. These TF cells showed characteristic cell-senescence features and developed in association with extensive CD4+ T cell proliferation in vivo, suggesting replicative senescence. Although the CD153+ TF cells were defective in proliferation capacity, they were quite stable and specifically responded to self GC-B cells to secret abundant osteopontin, which inhibited B cell receptor–induced GC-B cell apoptosis in f-BWF1 mice. Transfer of CD153+ PD-1+ CD4+ T cells promoted the growth of spontaneous GCs, whereas administration of anti-osteopontin Ab suppressed GC enlargement and anti-nuclear Ab production and ameliorated clinical lupus nephritis of f-BWF1 mice. Current results suggest that senescent CD153+ TF cells generated as a consequence of extensive endogenous CD4+ T cell proliferation play an essential, if not sufficient, role in lupus pathogenesis in lupus-prone genetic background and may also contribute to an increased autoimmunity risk with age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.